Teoría de Conjuntos

Pedro Sánchez Terraf*

9 de junio de 2022

1. Guía de Clases

- 1. Introducción. Contexto histórico: creciente abstracción en Matemática. G. Cantor y conjuntos excepcionales de series trigonométricas. Conjunto derivado E' e interación. Necesidad de enumerar proceso transfinito. Ordinales como tipos de isomorfismo de órdenes (ejemplo $\omega+1$ incrustado en \mathbb{R}). Paradoja de Burali-Forti. Paradoja de Russell. Restricción a Comprensión y Paradoja de Berry. Razonamientos matemáticos = ZFC + Lógica de primer orden.
- 2. Predicados, Clases, relaciones de clase, funciones de clase. Par de Wiener-Kuratowski, productos cartesianos (en $ZF^- P$), Relaciones de orden parcial (estrictas y laxas), bien fundadas, totales. Buen orden (estricto). Ejemplos: $\mathbb{R}^{\geq 0}$, \mathbb{N} , $\mathbb{N} \times \mathbb{N}$.
- 3. Conjuntos transitivos. Ordinales. Ord está bien ordenada por \in ; es clase propia (Burali-Forti). Ordinales sucesores, límites, números naturales. La *clase* ω . Axioma de Infinito.
- 4. Inducción ordinaria en ω . Existencia de ⁿB y ^{< ω}B. Definiciones por recursión sobre ω .
- 5. Isomorfismo entre estructuras "binarias". Propiedades de isomorfismos: preservan segmentos iniciales, restricciones son isos sobre la imagen. Isomorfismos de conjuntos de ordinales en ordinales. Rigidez de los ordinales. Todo buen orden es isomorfo a un ordinal.
- 6. Tipos de isomorfismo de buenos órdenes son monótonos (respecto de la inclusión). Orden lexicográfico, producto ordinal y la suma ordinal de órdenes totales. Principio de Inducción Transfinita y enunciado de Recursión Transfinita. Definición recursiva de la suma ordinal; es estrictamente creciente en el segundo argumento (por inducción).
- 7. Preservación de supremos límite implica preservación de supremos generales. La suma es asociativa (por Inducción). Funciones normales
 - Comparación de conjuntos vía inyeccciones. Cardinales. Conjuntos bien ordenables, inclusiones y proyecciones son bien ordenables. Enunciado del Teorema de Cantor, Schröder y Bernstein. Teorema de Hartogs. Álefs.
- 8. Aritmética Cardinal. Teorema de Hessenberg.
 Equivalencias de AC. Existencia de selectores, Principio de buen orden AC⁺, Lema de Zorn y Principio Maximal de Hausdorff.
- 9. Cardinal de uniones acotadas $|\mathcal{F}| \leq \kappa \land \forall A \in \mathcal{F}(|A| \leq \kappa) \implies |\bigcup \mathcal{F}| \leq \kappa$. Validez con desigualdades estrictas. Cofinalidad. Lema de Factorización. Ejemplo de formalización en Isabelle/ZF.

^{*}Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación. Centro de Investigación y Estudios de Matemática (CIEM-FaMAF). Córdoba. Argentina.

- 10. Versión mejorada del Lema de Factorización. Lema de idempotencia. Ordinales regulares. La cofinalidad es un cardinal regular. Caracterización en términos acotación estricta de uniones. Teorema de König. Cardinales inaccesibles.
- 11. Características (invariantes) cardinales del Continuo. Dominación de funciones. Familias casi disjuntas (maximales). Cardinales \mathfrak{b} y \mathfrak{a} . Teorema de Solomon $\mathfrak{b} \leq \mathfrak{a}$. Cardinales \mathfrak{p} y \mathfrak{t} y discusión del Teorema de Malliaris-Shelah.
- 12. Nociones de forzamiento. Ejemplo $\operatorname{Fn}(I,J)$: funciones y filtros. Conjuntos densos, filtros \mathcal{D} -genéricos. Teorema del Filtro Genérico $(MA(\aleph_0))$. No hay genérico para $\operatorname{Fn}(\omega,\omega_1)$. Anticadenas; condición de cadenas contables (ccc). Axioma de Martin $MA(\kappa)$; MA implica que $\mathfrak{b} = 2^{\aleph_0}$.
- 13. Definición de filtro e ideal sobre X como casos particulares de filtros en $\langle \mathcal{P}(X) \setminus \{0\}, \subseteq \rangle$ resp. $\langle \mathcal{P}(X) \setminus \{X\}, \supseteq \rangle$. Dual de un filtro. Ultrafiltros. Los ultrafiltros son filtros maximales. Filtros λ -completos. Filtro de Fréchet, ideal $\mathcal{N}ull$.

 Conjuntos club. Intersección de $< \kappa$ clubs es club. El filtro Club (κ) . Conjuntos estacionarios. Ejemplos de clubs y de conjuntos estacionarios: S^{κ}_{θ} . Presentación de la intersección diagonal mediante la clausura bajo una operación unaria.
- 14. El filtro club es cerrado por intersecciones diagonales de tamaño κ . Lema de "compresión" de Fodor. Cardinales de Mahlo.

 Problema de la Medida para cardinales. Medidas λ -aditivas. Cardinales medibles a valores reales (mvr). El primer cardinal que admite una medida no trivial es mvr. Los cardinales mvr son regulares. Átomos de una medida. Enunciado del Teorema de Ulam.
- 15. Si el primer cardinal mvr admite medida sin átomos, entonces 2^{\aleph_0} también. Los cardinales mvr son límites. Átomos y medidas a dos valores. Cardinales medibles. Relación con ultrafiltros. Los cardinales medibles son inaccesibles.
- 16. Relaciones (de clase) bien fundadas y conjuntistas. Enunciado del Lema (*). Clausura transitiva y relaciones de clase conjuntistas. Inducción sobre relaciones bien fundadas. Teorema de Recursión bien fundada: aproximaciones a la solución recursiva.
- 17. Rango de una relación bien fundada. Conjuntos bien fundados WF. Jerarquía acumulativa o del rango bien fundado $R(\alpha) = V_{\alpha}$. Familia $H(\kappa)$ de los conjuntos de cardinal $< \kappa$ hereditariamente. $H(\kappa)$ es subconjunto de $R(\kappa)$.
- 18. Necesidad de matematizar la noción de "propiedad" de una estructura matemática. Ejemplo: "independencia" de la conmutatividad del producto en grupos. Modelos de primer orden, fórmulas de primer orden, relación de satisfacción.
 - Obstrucciones con ZFC: Segundo Teorema de Incompletitud de Gödel. Satisfacción de axiomas de ZFC por un modelo. Modelos estándares y transitivos.
- 19. Relativización de fórmulas y relación con satisfacción por modelos estándares. Algunas propiedades de la relación de demostrabilidad ⊢. Pruebas finitarias de consistencia relativa
 - Las clases transitivas satisfacen Extensionalidad. Las fórmulas Δ_0 son absolutas entre modelos transitivos.

- 20. Validez de axiomas en clases (Fundación, Separación, Reemplazo).

 Relativización y absolutez de relaciones y funciones de clase. Absolutez de par, unión (S/P) y sucesor. Validez de Infinito.
- 21. Relativización y absolutez de relaciones y funciones de clase, continuado. Absolutez de fórmulas Δ_0 sobre lenguajes generales.
 - Validez de Pares y Unión. WF es modelo de clase de ZFC. Fórmulas Π_1 , Σ_1 y Δ_1 ; absolutez de estas últimas para modelos transitivos. Absolutez de funciones Π_1 con unicidad en el modelo.
- 22. $H(\kappa)$ es modelo de ZFC-P para κ regular incontable; $H(\aleph_1)$ satisface " $\mathcal{P}(\omega)$ no existe" y "todo conjunto es contable". Las nociones de ordinal, cardinal, regularidad y ser límite en sentido fuerte son absolutas para clases transitivas cerradas por \mathcal{P} .
 - Si κ es inaccesible, $H(\kappa)$ satisface ZFC. Consistencia relativa de ZFC + "no existen cardinales inaccesibles".
- 23. Teorema de Compacidad a partir de Completitud y construcción de modelos mal fundados de *ZFC*. Colapso de Mostowski.
 - Ultraproductos. Algebrización de la equivalencia lógica mediante el Teorema de Keisler-Shelah. Teorema de Los. La "diagonal" es una incrustación elemental en la ultrapotencia.
- 24. Truco de Scott. Ultrapotencias del universo. La incrustación elemental $j: V \to V^I/\mathcal{U}$. Buena fundación requiere ultrafiltro σ -completo.
 - Ultrapotencia V^{κ}/\mathcal{U} con κ medible y \mathcal{U} κ -completo. Los ordinales menores que κ son preservados por la incrustación elemental mos $\circ j: V \to V^{\kappa}/\mathcal{U} \to M$. El punto crítico de mos $\circ j$ es κ .