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Chain bounding, the leanest proof of Zorn’s
lemma, and an illustration of computerized

proof formalization

Abstract. We present an exposition of the Chain Bounding Lemma, which is a common gen-
eralization of both Zorn’s Lemma and the Bourbaki-Witt fixed point theorem. The proofs of
these results through the use of Chain Bounding are amongst the simplest ones that we are
aware of. As a by-product, we show that for every poset P and function f from the powerset
of P into P , there exists a maximal well-ordered chain whose family of initial segments is
appropriately closed under f .

We also provide an introduction to the process of “computer formalization” of mathemat-
ical proofs by using proofs assistants. As an illustration, we verify our main results with the
Lean proof assistant.

1. INTRODUCTION This paper grew out of the search for an elementary proof of
Zorn’s Lemma. One such proof was obtained by the first author, which is similar to
the one by Lewin [1].

After a careful examination, the authors realized that the method of proof actually
yielded a pair of new, similar principles: Chain Bounding and the Unbounded Chain
Lemma, which state the impossibility of finding strict upper bounds of linearly ordered
subsets of posets. The first one is more fundamental, since it does not depend on the
Axiom of Choice, which states:

(AC ) For every family {Ai | i ∈ I} of nonempty sets, there exists a function f : I →⋃
i∈I Ai such that for all i ∈ I , f(i) ∈ Ai.

When Chain Bounding is coupled with AC , it implies the second principle and then
Zorn’s Lemma. Chain Bounding also implies the Bourbaki-Witt fixed point theorem;
all these results are in Section 3.

Our original proof of Chain Bounding proceeded by contradiction, where a few
relevant concepts were defined; this proof is essentially the one that appears in Ap-
pendix A, where it is used to show Zorn’s Lemma in a self-contained manner. We
realized that it was better instead to present those concepts (“good chains” and their
comparability) independently to obtain positive results. These appear in Section 2, and
Chain Bounding is now proved as a consequence of its main Theorem 4, the existence
of a greatest good chain. Nevertheless, the main advantage of Chain Bounding in com-
parison to Theorem 4 is its straightforward statement and consequences, which make
it more appealing as a “quotable principle”.

As a way to discuss the correctness and level of detail of our arguments, we in-
troduce the subject of “computer formalization” of mathematics in Section 4, and in
Appendix B we present a brief description of the verification of our main results, using
the Lean proof assistant.

A word on our intended audience. As one of the reviewers indicated, different parts
of this paper can be better suited for varied kinds of readers. In general, the paper
should be accessible to mature undergraduates, but the main focus changes a bit across
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sections. Instructors can benefit from having the succinct proof of Zorn’s Lemma from
Appendix A, or directly adopting Chain Bounding as a tool if they are teaching a
course on posets. The discussion from Corollary 8 to the end of Section 3 goes a little
deeper into the details and assume a bit more of set-theoretic background. Finally, we
hope that the general exposition of proof assistants be accessible to a wider public; the
detailed example in Appendix B is a bit more challenging but might be attractive to
younger students which are more familiar with computer technology.

2. THE GREATEST GOOD CHAIN We introduce some notation. Let P be a poset
and C ⊆ P ; we say that s ∈ P is a strict upper bound of C if ∀c ∈ C, c < s. Fur-
thermore, if S ⊆ C, we say that S is an initial segment of C (“S ⊑ C”) if for all
x ∈ C, x ⩽ y ∈ S implies x ∈ S. We will usually omit the word “initial” and simply
say “S is a segment of C”. The strict version of the segment relation is denoted by
S ⊏ C, that is, S ⊑ C and S ̸= C. Finally, P(X) denotes the powerset of the set X .

Definition 1. Let g : P(P ) → P(P ) be given. We say that a chain C ⊆ P is good
for g if for all S ⊏ C, S ⊏ g(S) ⊑ C.

When understood from the context, we omit “for g”. We have the following key
result.

Lemma 2 (Comparability). Let P be a poset and g : P(P ) → P(P ). If C1 and C2

are good chains, one is a segment of the other.

Proof. Let S be the family of mutual segments of both C1 and C2. Hence
⋃

S is
also a mutual segment. If

⋃
S is different from both C1 and C2, then g(

⋃
S) should

be a mutual segment since both are good; but this contradicts the fact that g(
⋃

S) ̸⊆⋃
S.

Lemma 3. The union of a family F of good chains is a good chain.

Proof. The union U :=
⋃

F is a chain by Comparability.
Note that every good chain D such that D ⊆ U is a segment of U : Suppose that

c ∈ U and c < d ∈ D. Then c ∈ C for some good C ∈ F. If C is a segment of D,
we have c ∈ D and are done. Otherwise, the converse relation holds by Comparability
and then we also have c ∈ D.

We will see that U is good. Let S ⊊ U be a proper segment of U . Then, there exists
d ∈ U such that ∀c ∈ S, c < d. Let D be a good chain such that d ∈ D. Since D is a
segment of U , all those c belong to D. We conclude S ⊆ D, and since S is a segment
of U , it is a segment of D and it is proper because d ∈ D ∖ S. Then g(S) is segment
of D, and hence g(S) is a segment of U .

By considering the union of all good chains, we readily obtain:

Theorem 4 (Greatest Good Chain). Let P be a poset and g : P(P ) → P(P ). The
family of all good chains has a maximum under inclusion.

3. CHAIN BOUNDING AND APPLICATIONS The following lemma is the key
to all of what follows. In some sense, it might be regarded as a non-AC version of
Zorn’s lemma.

Lemma 5 (Chain Bounding). Let P be a poset. There is no assignment of a strict
upper bound to each chain in P .

2 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 131



Mathematical Assoc. of America American Mathematical Monthly 131:1 October 29, 2024 3:36 p.m. chain˙bounding˙AMM.tex page 3

Proof. Assume, by way of contradiction, that f(C) is a strict upper bound of C for
each chain C ⊆ P . Hence C is a proper segment of g(C) := C ∪ {f(C)}; extend
this g arbitrarily to the rest of the subsets of P . By Theorem 4, there exists a greatest
good chain U for g. But this is a contradiction, since g(U) is easily seen to be a good
chain, but g(U) ̸⊆ U .

The wording of the Chain Bounding Lemma is a bit awkward, since it is actually
a negation. However, if we now invoke AC , we get the following more natural state-
ment.

Lemma 6 (Unbounded Chain). Assume AC . For every poset P there exists a chain
C ⊆ P with no strict upper bound.

Proof. By way of contradiction, assume that for every chain C ⊆ P there exists a
strict upper bound. Using AC , let f assign to each C such a bound. But this contradicts
Chain Bounding.

We now turn to applications. The first one is very simple proof of Zorn’s Lemma
(obviously taking into account the lemmas proved so far).

Corollary 7 (Zorn). If a poset P contains an upper bound for each chain, it has a
maximal element.

Proof. By the Unbounded Chain Lemma, take C ⊆ P without strict upper bounds.
Then any upper bound of C must be maximal in P .

A direct, self-contained proof of Zorn’s Lemma condensing all the ideas discussed
up to this point appears in Appendix A below. This includes some simplifications that
also apply to a direct proof of Chain Bounding; for instance, the definition of good
chain is a bit shorter and one only needs to show that the union of all good chains is
good.

Since Zorn’s Lemma implies AC , we immediately have:

Corollary 8. The Unbounded Chain Lemma is equivalent to AC over Zermelo-
Fraenkel set theory.

Kunen points out in [2] that, for those not familiar with set theory, it may not be
clear why Zorn’s Lemma should be true, since the best-known proofs make use of
ordinals and transfinite recursion. Our highest hope is that after seeing our proof, the
old joke turns into “AC is obviously true, the Well-Ordering Theorem is obviously
false, and Zorn’s Lemma. . . holds by Chain Bounding!”.

Lewin, in [1], provides a very short proof without the need for ordinals or recur-
sion, but making use of well-ordered chains. In [3], Lang presents a proof using the
Bourbaki-Witt fixed point theorem of order theory, without even employing the con-
cept of well-ordered set. Finally, Brown [4] gives a beautiful and simple proof inspired
by Lang’s but without the need for Bourbaki-Witt. This proof is slightly indirect since
it actually proves the Hausdorff Maximal Principle and considers “closed” subsets in
the poset of chains of the original poset ordered by inclusion. (Other proofs in the same
spirit can be found in Halmos [5] and Rudin [6].)

The proof we presented here is not as short as Lewin’s but it is more elementary
since there is no use of (the basic theory of) well-orders in an explicit way. The main
difference in method that allows us to avoid them is the generalization of his definition
of “conforming chains” by considering general initial segments instead of principal
ones (i.e., of the form {x ∈ P | x ⩽ p} for some p ∈ P ). This move allows us to
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use the stronger expressiveness achieved by talking about general segments (indirectly
referring to the powerset of P ), but avoids referring to “second order” chains (i.e.,
chains in the poset of chains).

In spite of this simplification, the fundamental character of the concepts of well-
order and well-foundedness in general should be strongly emphasized. These are un-
avoidable in a sense; actually good chains for functions that add at most one element
(such as the one in the proof of Chain Bounding) are well-ordered:

Proposition 9. Let (P,<) be poset, f : P(P ) → P and let g(C) := C ∪ {f(C)}.
Every good chain for g is well-ordered by <.

Proof. We leave to the reader the verification of the fact, under the assumptions, that
every segment D of a good chain is good.

Let C be a good chain and assume X ⊆ C is nonempty. Let S be the set of strict
lower bounds of X in C. Since X ̸= ∅, S is a proper segment of C, and goodness
ensures that S ̸= g(S) = S ∪ {f(S)} is also a segment of C. Since f(S) /∈ S, there
is some x ∈ X such that x ⩽ f(S). We claim that any such x must be equal to f(S)
and hence it is the minimum element of X . For this, consider the good subchain D :=
{c ∈ C | c ⩽ x} of C. Since S is likewise a proper segment of D, f(S) ∈ g(S) ⊆ D
and hence we obtain the claim.

Moreover, it can be shown that a chain of a poset P is well-ordered if and only it is
a good chain for some g as above.

Our second application is the aforementioned fixed point theorem.

Corollary 10 (Bourbaki-Witt). Let P be a non-empty poset such every chain C ⊆ P
has a least upper bound. If h : P → P satisfies x ⩽ h(x) for all x ∈ P , then h has a
fixed point, i.e., there is some x ∈ P such that x = h(x).

Proof. Assume by way of contradiction that x < h(x) for all x ∈ P . But then
f(C) := h(supC) immediately contradicts Chain Bounding.

Note that the greatest good chain for C
g7−→ C ∪ {h(supC)} is the least complete

subposet of P closed under h, and its ordinal length is (the successor of) the number
of iterations of h needed to reach its least fixed point starting from the bottom element
of P .

It is relevant here that Chain Bounding does not depend on AC , since Bourbaki-
Witt can be proved without using it. This is another reason why we consider Chain
Bounding the central item of this work.

4. COMPUTER FORMALIZATION OF MATHEMATICS Although Lewin’s
proof is even shorter than ours, it could be debatable whether it is more straightfor-
ward for a general audience. Specifically, some acquaintance with the basic theory
of well-orders seems to be required to understand it in full; in other words, not all
the details of the proof are completely disclosed (note, e.g. the Mathematics Stack
Exchange questions [7] and [8] and their answers).

Our combo Chain-Bounding/Zorn is not immune to the same criticism: Some tricky
details could still have been swept under the rug—or, even worse, some mistake. The
question presents itself: How could one assert that all details of a proof have been
taken care of, and how to be sure that absolutely all steps are correct? This concern
will certainly connect in the reader’s mind to the “rigorization” process in Mathematics
during the late XIX century and perhaps to the foundational aspects of mathematical
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logic. It might also raise an alert of sorts (recalling Russell and Whitehead’s Principia)
of the infeasibility of the task.

The fact of the matter is that thanks to a steady development in Computer Science,
modern programming technologies called proof assistants (PAs) have been created,
that allow one to write a mathematical proof in a formal language and the computer
can then verify it for correctness. This process is called “formalization”, “(formal)
verification”, or “mechanization”.

Use cases PAs not only make it possible to trace every single detail of simple results
such as the ones in this paper; highly non trivial and recent research-level mathe-
matical results have been checked in diverse PAs. Notable formalizations include the
Four Color Theorem [9], the Odd-Order Theorem [10] (both using the Coq PA), and
the proof of the Kepler Conjecture [11] (using a combination of HOL-Light and Is-
abelle/HOL PAs). Even more recently, Gowers, Green, Manners, and Tao settled the
Polynomial Freiman-Ruzsa conjecture [12], sharing their results on November 9th,
2023; Tao started a project [13] to formalize them (including many preliminaries) us-
ing the Lean PA [14] and it was finished [15] less than a month after the manuscript
was released! The process was described by Tao in his blog [16].

There are also many ongoing attempts to use PAs in teaching. A regular workshop
[17] discusses the potential uses of the latter and other computer technologies in edu-
cation, and there are actually many courses that already use PAs. Examples are Mas-
sot’s calculus course [18] for the second semester of BSc, and Macbeth’s Math 2001
at Fordham University, supported by an excellent introductory material [19] to Lean.
More pointers to the use of Lean in education can be found in Avigad’s talk [20] at the
Fields Institute.

A bird’s eye comparison To this day, there are plenty of fine pieces describing the
different kinds PAs available, and their use, benefits and pitfalls. To name a few, Harri-
son, Urban, and Wiedijk recall the rich history of PAs in their [21], while Koutsoukou-
Argyraki shares her experiences using Isabelle/HOL in [22] and, after presenting an
insightful summary, interviews some of the relevant figures involved with this technol-
ogy in her [23]. Even a recent article in Nature magazine discusses PAs [24]. Having
all these resources at hand, we will only briefly overview some details of current PAs.

PAs come in a great variety, both internally/foundationally speaking and from the
user point of view. Regarding foundations, most of them differ from the traditional set-
theoretic ones, being based on several kinds of type theories. For the purpose of this
paper, we can take “type” and “set” to be synonyms, but the main difference is that
every mathematical object in consideration belongs to exactly one type; as an example
of this stipulation, a natural number n is not to be considered a real one, but instead
there is an appropriate embedding N ↪→ R which sends n to the corresponding real.
Isabelle/HOL and HOL-Light are based on the “simple” theory of types; the axiomat-
ics of the latter PA is surprisingly terse, and a description can be found at Hales [25].
On the other hand, Coq and Lean support “dependent type theory”, which is stronger.1

There are notable differences also in the language used by PA to write proofs and
the overall user interfaces. Some PAs are actually full-fledged programming languages

1There have been interesting debates (e.g., Buzzard’s challenge to the Isabelle community [26]) on what is
the actual impact of the differing strengths of PAs’ foundations concerning the possibility to formalize research-
level mathematics. We only point out that HOL (simple type theory) systems are weaker than Zermelo-Fraenkel
set theory with Choice, which in turn is weaker than the dependent type theory with universes used in Lean.
We are also not discussing the constructivist aspect of foundations, which may enable or prevent the extraction
of algorithms from the formalized proofs.
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that are also suited to formalized proofs (e.g., Agda, Lean), while some others may
produce computer programs from a proof (Coq, Isabelle/HOL). Concerning the way
proofs are written, two major flavors are available [21, Sect. 6.2]:
• declarative proofs state intermediate facts that lead to the expected result (“We have
X , hence Y , and then Z”); and

• procedural ones, which consist in a series of instructions to be performed to current
“goal” or assertion to be proved (“Subtract x from both sides, unfold f ’s definition,
conclude”).

In a very rough first approximation, procedural proofs are easier to write (and more
useful for exploration) and declarative proofs are easier to read (in some cases, even
without the need to use the corresponding PA to examine them).

Most PAs support a combination of both methods, but there are some extreme cases.
For instance, the Naproche variant of Isabelle is completely declarative in the sense
that it tries to solve each intermediate step automatically; this results in beautiful for-
mal proofs [27] but it is somewhat limited in power. On the other end, proofs in Agda
are constructive, and what one actually does is to define a function that provides the
witness/result required by the statement.

Most of our experience comes from using both Isabelle and Lean. Isabelle allows
its users to write proof documents that can be read without the need of a computer; but
it should be emphasized that this requires extra effort, and people do not always for-
malize things in this way. Nevertheless, the HOL variant of Isabelle has a noteworthy
component (Sledgehammer) able to deal automatically with many of the intermediate
steps. Lean, on the other hand, uses a more procedural way to work. After consulting
on this point, it was observed that human-readable versions of the proofs could be de-
rived from the formal artifacts, as exemplified during Massot’s talk [28] at the 2023
IPAM Workshop on Machine Assisted Proofs. Tools like Sledgehammer are also being
actively developed for Lean.

A further difference between these two PAs might be the composition of the user
base. Thanks to several high-profile projects, many mathematicians have started to
use Lean during the recent years; and while there are mathematicians working with
Isabelle, we believe their community hosts a majority of computer scientists.

In Appendix B, we present the formalization of the main results of the paper using
the Lean PA, which may serve to showcase the look of the code using it and some
characteristics of its user interface. We also invite the reader to visit the website

https://leanprover-community.github.io/learn.html

where many indications can be found on how to start using Lean, and the online forum

https://leanprover.zulipchat.com/

fosters the growing community of users and is very welcoming to newcomers.

A. ZORN’S ON ITS OWN For ease of reference, we streamline the arguments
above to obtain a compact version of the proof.

Recall that for a poset P , s ∈ P is a strict upper bound of C ⊆ P if ∀c ∈ C, c < s;
and that S ⊆ C is a segment of C if for all x ∈ C, x ⩽ y ∈ S implies x ∈ S.

Lemma (Zorn). If a poset P contains an upper bound for each chain, it has a maximal
element.

Proof. Assume by way of contradiction that (P,⩽) does not have a maximal element.
Hence, for every chain C ⊆ P there exists a strict upper bound (otherwise, any upper
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bound of C would be maximal). Using the Axiom of Choice, let g assign C ∪ {s} to
each chain C ⊆ P , where s is any such bound.

A chain C ⊆ P is deemed to be good whenever

(*) If S ̸= C is a segment of C, then g(S) also is.

We need the following property of good chains:

(Comparability) If C1, C2 are good, one is a segment of the other.

To prove it, let S be the family of mutual segments of both C1 and C2. Hence
⋃

S is
also a mutual segment. If

⋃
S is different from both C1 and C2, then g(

⋃
S) should

be a mutual segment by (*); but this contradicts the fact that g(
⋃

S) ̸⊆
⋃

S.
Let U be the union of all good chains, which is a chain by Comparability.
Note that every good chain D is a segment of U : Suppose that c ∈ U and c < d ∈

D. Then c ∈ C for some good C. If C were not a segment of D, then the converse
relation would hold by Comparability and then we would also have c ∈ D.

We will see that U is good. Let S ⊊ U be a proper segment of U . Then, there exists
d ∈ U such that ∀c ∈ S, c < d. Let D be a good chain such that d ∈ D. Since D is a
segment of U , all those c belong to D. We conclude S ⊆ D, and since S is a segment
of U , it is a segment of D and it is proper because d ∈ D ∖ S. Then g(S) is segment
of D, and hence g(S) is a segment of U .

We reach a contradiction, since g(U) is also a good chain, but g(U) ̸⊆ U .

B. A COMPUTER FORMALIZATION IN LEAN In this section, we present the
formalization of the main results of the paper using the Lean proof assistant. It takes
up 420 lines of code and it is available at

this link,

For the remainder of this section, we will focus on explaining only a fraction of the
details involved (and in particular, some notations will not be dealt with); our main
objective is to make a point that it is possible to translate mathematical reasoning into
the computer, in a way that at least partially resembles the way it is done on paper.
We hope that the reader’s curiosity will be sufficiently motivated in order to visit the
mentioned resources and to learn more about formalization and Lean.

We start our Lean file by importing basic results on chains, and the definition of
complete partial orders (which appear in the Bourbaki-Witt Theorem).

import Mathlib.Order.Chain

import Mathlib.Order.CompletePartialOrder

variable {α : Type*}

The last line above indicates that we will be talking about a “type” α (which, in the
type theory of Lean roughly corresponds to a set, or perhaps more appropriately, a set
underlying some structure). Greek letters are commonly used for types, and here this
α will replace our P from above.

We highlight some of the basic definitions. For instance, “S is a (proper) segment
of C” is defined in the following way:

def IsSegment [LE α] (S C : Set α) : Prop := S ⊆ C ∧ ∀ c ∈ C, ∀ s ∈ S, c

⩽ s → c ∈ S

def IsPropSegment [LE α] (S C : Set α) : Prop := IsSegment S C ∧ S ̸= C
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The arguments S and C appear declared as belonging to the powerset of α, which in
Lean is written as Set α. The declaration in square brackets is an implicit argument
stating that α belongs to the class of types having the ⩽ notation defined (which is the
bare minimum to be able to interpret the right hand side). After a few more lines, the
declaration variable [PartialOrder α] states that we will be assuming a partial order
structure on α.

We can actually set up infix notation for IsSegment and IsPropSegment in order to
be able to write expressions as S ⊑ C and S ⊏ C, as shown below.

After a new concept is introduced, a customary requisite is to write some extremely
basic lemmas which allow one to work with it. These are referred to by the name
API, an acronym for “application programming interface”, a concept that comes from
Computer Science. In our formalization, part of the API comprises all the possible
transitivity lemmas involving ⊑, ⊏, or both.

We describe the formalization of the fact, used at the beginning of the proof of
Lemma 2, that the union of a family of segments is a segment. The formalized state-
ment is the following (where

⋃
0 denotes the operator of union of a family), and the by

keyword signals the start of the (tactic) proof:

lemma sUnion_of_IsSegment {F : Set (Set α)} (hF : ∀M ∈ F, M ⊑ C) :
⋃

0 F

⊑ C := by

Since
⋃

0 F ⊑ C is defined by a conjunction, its justification is constructed by pro-
viding proofs for each conjunct. Each of those proofs appear indented and signaled by
“·” below. We will analyze the first sub-proof line by line.

constructor

· intro s sInUnionF

obtain ⟨M, MinF, sinM⟩ := sInUnionF

exact (hF M MinF).1 sinM

· intro c cinC s sInUnionF cles

obtain ⟨M, MinF, sinM⟩ := sInUnionF

exact ⟨M, MinF, (hF M MinF).2 c cinC s sinM cles⟩

Right after writing constructor and the subsequent dot, the VS Code editor echoes:

α : Type u_1

inst � : PartialOrder α
C : Set α
F : Set (Set α)
hF : ∀ M ∈ F, M ⊑ C

⊢
⋃

0 F ⊆ C

This “InfoView” lists all terms available to work (hypotheses are also included as
“Propositional” terms), and the current goal (which, for this sub-proof, is the inclusion
on the last line).

The natural way of producing a proof of that inclusion (defined by ∀ {|s|}, s ∈
⋃

0

F → s ∈ C), is to introduce two new variables named s and sInUnionF,

· intro s sInUnionF

whose types (“α” and “s ∈
⋃

0 F”, respectively) are deduced from the previous goal.
Now the InfoView turns into

α : Type u_1

inst � : PartialOrder α
C : Set α
F : Set (Set α)
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hF : ∀ M ∈ F, M ⊑ C

s : α
sInUnionF : s ∈

⋃
0 F

⊢ s ∈ C

From sInUnionF, which states by definition that s belongs to some element of F, we
obtain such an element M and further terms/hypothesis that state the relations among
them with the next line (where the “:=” can be read as “from”):

obtain ⟨M, MinF, sinM⟩ := sInUnionF

After this tactic, the propositional variables MinF and sinM state that M ∈ F and s ∈
M, respectively. Finally, we combine all the elements available by using some of the
benefits of the type-theoretic framework:

• Logical constructs like implications and universal quantifiers behave as functions.
For instance, the hypothesis hF (of type ∀ M, M ∈ F → M ⊑ C) can be fed with the
term M to obtain the implication hf M (having type M ∈ F → M ⊑ C) and the latter
can be applied to MinF (a term for the antecedent) to obtain a term hf M MinF for the
consequent M ⊑ C.

• The conjunction behaves as a Cartesian product, where components correspond to
each conjunct. Hence the first component (hf M MinF).1 is a term justifying M ⊆ C

= ∀ {|s|}, s ∈ M → s ∈ C.

By applying the last term obtained to sinM, we obtain exactly what we were looking
for, and the sub-proof ends.

exact (hF M MinF).1 sinM

For the definition of goodness, we declare our own class consisting of types support-
ing a partial order, and we add an otherwise unspecified g. A special type of comment
(a docstring) describes the concept introduced:

/--

A partial order with an *expander* function from subsets to subsets. In

main applications, the

expander actually returns a bigger subset.

-/

class OrderExpander (α : Type*) [PartialOrder α] where

g : Set α → Set α

Assuming the appropriate structures on α we are finally able to write down the defini-
tion.

variable [PartialOrder α] [OrderExpander α]

def Good (C : Set α) := IsChain ( · ⩽ ·) C ∧ ∀ {S}, S ⊏ C → S ⊏ g S ∧ g

S ⊑ C

A further class concerns partial orders with an “f”,

class OrderSelector (α : Type*) [PartialOrder α] where

f : Set α → α

and a statement that each type supporting it is an “instance” of OrderExpander in a
canonical way. This is justified by presenting C

g7−→ C ∪ {f(C)} as the witness.

instance [PartialOrder α] [OrderSelector α] : OrderExpander α := ⟨fun C =>

C ∪ {OrderSelector.f C}⟩
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We skip directly to the statement of the Unbounded Chain Lemma,

lemma unbounded_chain [PartialOrder α] [Inhabited α] :

∃ C, IsChain ( · ⩽ ·) C ∧ ¬ ∃ sb : α, ∀ a ∈ C, a < sb

which moreover assumes α to be nonempty (more precisely, that has a designated
element) for simplicity, and the proof of Zorn’s Lemma using it:

lemma zorn [PartialOrder α] [Inhabited α]
(ind : ∀ (C : Set α), IsChain ( · ⩽ ·) C → ∃ ub, ∀ a ∈ C, a ⩽ ub) : ∃
(x : α), IsMaximal x := by

obtain ⟨C, chain, subd⟩ := unbounded_chain (α := α)
push_neg at subd

obtain ⟨ub, hub⟩ := ind C chain

existsi ub

intro z hz

by_contra zneub

obtain ⟨a, ainC, anltz⟩ := subd z

exact anltz $ lt_of_le_of_lt (hub a ainC) $ lt_of_le_of_ne’ hz zneub

We comment briefly on some of the tactics employed in this elementary proof. As be-
fore, obtain decomposes the statement of unbounded_chain, and in particular subd is
a term asserting the truth of ¬ ∃ sb : α, ∀ a ∈ C, a < sb. The tactic push_neg ap-
plies the De Morgan rules transforming it into ∀ (sb : α), ∃ a ∈ C, ¬a < sb. The
obtained upper bound ub for the (strictly) unbounded chain is presented as a witness
to the existential quantifier of the conclusion by using the existsi tactic. After intro-
ducing variables h and hz, the by_contra tactic starts a proof by contradiction where
the new hypothesis (the negation of the goal appearing immediately before) is stored
in the variable zneub.

We would like to add a final word on the description of this proof of Zorn’s Lemma
as the “leanest” one: Mathlib’s version of its formalization [29] was ported (translated)
from Isabelle/HOL. This new proof was originally conceived for and written in Lean.
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