Una invitación a la Teoría de Conjuntos

P. Sánchez Terraf¹

CIEM-FaMAF — Universidad Nacional de Córdoba

Seminario de Lógica Algebraica UNICEN (Virtual), 23 / 04 / 2021

¹Supported by CONICET and SeCyT-UNC

■ Ante todo, ¡bienvenidos a la Teoría de Conjuntos! (no muerde).

- Ante todo, ¡bienvenidos a la Teoría de Conjuntos! (no muerde).
- Interrumpan todo lo necesario.

- Ante todo, ¡bienvenidos a la Teoría de Conjuntos! (no muerde).
- Interrumpan todo lo necesario.
- Ninguna pregunta será retórica: ¡anímense!

- Ante todo, ¡bienvenidos a la Teoría de Conjuntos! (no muerde).
- Interrumpan todo lo necesario.
- Ninguna pregunta será retórica: ¡anímense!
- Advertencia 1: Habla un conjuntista en (de)formación.

- Ante todo, ¡bienvenidos a la Teoría de Conjuntos! (no muerde).
- Interrumpan todo lo necesario.
- Ninguna pregunta será retórica: ¡anímense!
- Advertencia 1: Habla un conjuntista en (de)formación.
- Advertencia 2: En casa de posets, el orden histórico es de palo.

Recordando: Los axiomas ZFC (Zermelo, Fraenkel, Choice)

```
Pares Existe \{x,y\}.

Unión Existe \bigcup x.

Infinito Existe \omega = \mathbb{N}_0.

Partes Existe \mathcal{P}(x).

Separación Existe \{x \in y : Q(x)\} (Q definible).

Reemplazo Existe \{F(x) : x \in y\} (F definible).

Elección (AC) Existe f: A \to \bigcup A tal que \varnothing \neq x \in A implica f(x) \in x.

Fundación \in es bien fundada.
```

Recordando: Los axiomas *ZFC* (Zermelo, Fraenkel, *Choice*)

```
Pares Existe \{x,y\}.

Unión Existe \bigcup x.

Infinito Existe \omega = \mathbb{N}_0.

Partes Existe \mathcal{P}(x).

Separación Existe \{x \in y : Q(x)\} (Q definible).

Reemplazo Existe \{F(x) : x \in y\} (F definible).

Elección (AC) Existe f: A \to \bigcup A tal que \varnothing \neq x \in A implica f(x) \in x.

Fundación \in es bien fundada.
```

Hito epistemológico del Siglo XX

- 99.99 % de los objetos matemáticos se representan como conjuntos.
- Los razonamientos matemáticos válidos sobre ellos coinciden con pruebas en lógica de primer orden + *ZFC*.

Por eso voy a presentar primero algo mucho mejor.

Por eso voy a presentar primero algo mucho mejor.

Teorema (Principio Maximal de Hausdorff)

Todo poset tiene una cadena maximal.

¿Alguien se acuerda del enunciado de Zorn?

Por eso voy a presentar primero algo mucho mejor.

Teorema (Principio Maximal de Hausdorff)

Todo poset tiene una cadena maximal.

¿Alguien se acuerda del enunciado de Zorn?

Lema (Zorn)

Todo poset tal que toda cadena tiene cota superior, tiene un elemento maximal.

Por eso voy a presentar primero algo mucho mejor.

Teorema (Principio Maximal de Hausdorff)

Todo poset tiene una cadena maximal.

¿Alguien se acuerda del enunciado de Zorn?

Lema (Zorn)

Todo poset tal que toda cadena tiene cota superior, tiene un elemento maximal.

Pregunta (G. Incatasciato)

¿Basta chequear con sucesiones?

El primer ordinal no contable $\langle \omega_1, \in \rangle$

El primer ordinal no contable $\langle \omega_1, \in \rangle$

Sí, nuestro profeta G. Cantor probó que $\mathbb R$ es incontable.

El primer ordinal no contable $\langle \omega_1, \in \rangle$

Sí, nuestro profeta G. Cantor probó que $\ensuremath{\mathbb{R}}$ es incontable.

También lo caracterizó como el único orden total (a más de iso)

- sin extremos,
- completo, y
- separable.

El primer ordinal no contable $\langle \omega_1, \in \rangle$

Sí, nuestro profeta G. Cantor probó que $\mathbb R$ es incontable.

También lo caracterizó como el único orden total (a más de iso)

- sin extremos,
- completo, y
- separable.

Sea $\langle P, \leqslant \rangle$ un orden total sin último elemento.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant \rangle := \operatorname{menor} \operatorname{cardinal} \operatorname{y} \operatorname{tipo} \operatorname{de} \operatorname{orden} \operatorname{de} \operatorname{un} \operatorname{conjunto} \operatorname{no} \operatorname{acotado}.$

El primer ordinal no contable $\langle \omega_1, \in \rangle$

Sí, nuestro profeta G. Cantor probó que $\mathbb R$ es incontable.

También lo caracterizó como el único orden total (a más de iso)

- sin extremos,
- completo, y
- separable.

Sea $\langle P, \leqslant \rangle$ un orden total sin último elemento.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant\rangle := \text{ menor cardinal y tipo de orden de un conjunto no acotado}.$

- \blacksquare cf(ω_1) = $\omega_1 = \aleph_1$.
- $\mathbf{cf}(\beta) = \omega = \aleph_0$ para $\beta < \omega_1$ límite

El primer ordinal no contable $\langle \omega_1, \in \rangle$

Sí, nuestro profeta G. Cantor probó que $\mathbb R$ es incontable.

También lo caracterizó como el único orden total (a más de iso)

- sin extremos,
- completo, y
- separable.

Sea $\langle P, \leqslant \rangle$ un orden total sin último elemento.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant
angle\coloneqq$ menor cardinal y tipo de orden de un conjunto no acotado.

- $cf(\omega_1) = \omega_1 = \aleph_1.$
- $cf(\beta) = \omega = \aleph_0$ para $\beta < \omega_1$ límite \longrightarrow Sucesiones Fundamentales.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant
angle := \operatorname{menor}$ cardinal y tipo de orden de un conjunto no acotado.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant
angle := \operatorname{menor}$ cardinal y tipo de orden de un conjunto no acotado.

La topología del orden en ω es zonza. En $\beta>\omega$ contable, apenas menos (no es discreta). En ω_1 , florece.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant
angle := \operatorname{menor}$ cardinal y tipo de orden de un conjunto no acotado.

La topología del orden en ω es zonza. En $\beta>\omega$ contable, apenas menos (no es discreta). En ω_1 , florece.

Lema

Si B y C son cerrados no acotados ("clubs") en ω_1 , entonces $B \cap C \neq \emptyset$.

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant
angle\coloneqq$ menor cardinal y tipo de orden de un conjunto no acotado.

La topología del orden en ω es zonza. En $\beta>\omega$ contable, apenas menos (no es discreta). En ω_1 , florece.

Lema

Si B y C son cerrados no acotados ("clubs") en ω_1 , entonces $B \cap C \neq \emptyset$.

Corolario

Hay noción de subconjunto "grande" de ω_1 (que contienen un club).

Cofinalidad

 $\operatorname{cf}\langle P,\leqslant \rangle := \operatorname{menor} \operatorname{cardinal} \operatorname{y} \operatorname{tipo} \operatorname{de} \operatorname{orden} \operatorname{de} \operatorname{un} \operatorname{conjunto} \operatorname{no} \operatorname{acotado}.$

La topología del orden en ω es zonza. En $\beta>\omega$ contable, apenas menos (no es discreta). En ω_1 , florece.

Lema

Si B y C son cerrados no acotados ("clubs") en ω_1 , entonces $B \cap C \neq \emptyset$.

Corolario

Hay noción de subconjunto "grande" de ω_1 (que contienen un club).

Prueba del Lema.

Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.

Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.

$$\omega_1 \longleftrightarrow [0,1)$$

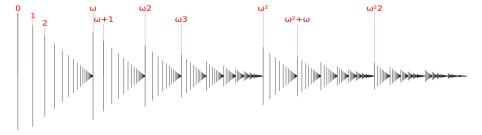
 $X \in \text{filtro club} \quad \longleftrightarrow \quad \text{medida } 1$

estacionario \longleftrightarrow medida positiva

Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.



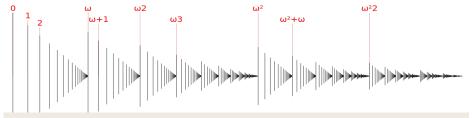
Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.

$$\omega_1 \longleftrightarrow [0,1)$$

 $X \in \text{filtro club} \longleftrightarrow \text{medida } 1$ densidad 1 "en el infinito" estacionario $\longleftrightarrow \text{medida positiva}$ densidad positiva "en el infinito"



Luzin: "Probáte la Hipótesis del Continuo" [1].

Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.

$$\omega_1 \longleftrightarrow [0,1)$$

 $X \in \text{filtro club} \longleftrightarrow \text{medida } 1$ densidad 1 "en el infinito" estacionario $\longleftrightarrow \text{medida positiva}$ densidad positiva "en el infinito"



Luzin: "Probáte la Hipótesis del Continuo" [1].

Aleksandrov: "Dale. Armo una función 1-1 que a cada límite $\beta<\omega_1$ le asigne alguien menor. Esperá un minuto...

Definición

Filtro club := generado por los clubs de ω_1 .

Conjunto estacionario := no incluido en el complemento de ningún club.

$$\omega_1 \longleftrightarrow [0,1)$$

 $X \in \text{filtro club} \longleftrightarrow \text{medida } 1$ densidad 1 "en el infinito" estacionario $\longleftrightarrow \text{medida positiva}$ densidad positiva "en el infinito"

Luzin: "Probáte la Hipótesis del Continuo" [1].

Aleksandrov: "Dale. Armo una función 1-1 que a cada límite $\beta < \omega_1$ le asigne alguien menor. Esperá un minuto... ¡No se puede!"

Ejercicio 47, Cap. II, Kunen 1980 [9]

Suponga que $X\subseteq$ Card es un conjunto que tiene densidad cero en todos lados. Probar que existe función inyectiva $f:X\to$ Ord que cumple $f(\alpha)<\alpha$ para todo $\alpha\in X$.

Ejercicio 47, Cap. II, Kunen 1980 [9]

Suponga que $X\subseteq$ Card es un conjunto que tiene densidad cero en todos lados. Probar que existe función inyectiva $f:X\to$ Ord que cumple $f(\alpha)<\alpha$ para todo $\alpha\in X$.

 $\aleph_{\alpha} \longmapsto \alpha$ and un bueeeen rato.

Ejercicio 47, Cap. II, Kunen 1980 [9]

Suponga que $X\subseteq$ Card es un conjunto que tiene densidad cero en todos lados. Probar que existe función inyectiva $f:X\to$ Ord que cumple $f(\alpha)<\alpha$ para todo $\alpha\in X$.

 $\aleph_{\alpha} \longmapsto \alpha$ anda un bueeeeen rato. Pero no siempre $(\kappa = \aleph_{\kappa})$.

Ejercicio 47, Cap. II, Kunen 1980 [9]

Suponga que $X\subseteq$ Card es un conjunto que tiene densidad cero en todos lados. Probar que existe función inyectiva $f:X\to$ Ord que cumple $f(\alpha)<\alpha$ para todo $\alpha\in X$.

 $\aleph_{\alpha} \longmapsto \alpha$ anda un bueeeeen rato. Pero no siempre $(\kappa = \aleph_{\kappa})$.

¿Por qué es tan difícil el problema?

 $X <_R^n Y \iff$ hay segmento final $X' \subseteq X$ y un mapa $f: X' \to Y$ "n a 1" tal que $f(\alpha) < \alpha$ para todo $\alpha \in X'$.

Ejercicio 47, Cap. II, Kunen 1980 [9]

Suponga que $X\subseteq$ Card es un conjunto que tiene densidad cero en todos lados. Probar que existe función inyectiva $f:X\to$ Ord que cumple $f(\alpha)<\alpha$ para todo $\alpha\in X$.

 $\aleph_{\alpha} \longmapsto \alpha$ and un bueeeen rato. Pero no siempre $(\kappa = \aleph_{\kappa})$.

¿Por qué es tan difícil el problema?

 $X<_R^nY\iff$ hay segmento final $X'\subseteq X$ y un mapa $f:X'\to Y$ "n a 1" tal que $f(\alpha)<\alpha$ para todo $\alpha\in X'$.

Teorema (Peng, PST, Weiss)

Caracterización de la relación $X <_R^n Y$ sobre $\mathcal{P}(\omega_1)$: existencia de "club" $C \subseteq Y \setminus X$ + funciones de conteo $A^\delta : X \cup Y \setminus \delta \to \mathbb{Z} \cup \{\pm \infty\}$.

Un ejercicio al rescate

Caracterización del orden del continuo

 $\langle \mathbb{R}, < \rangle$ es, salvo isomorfismo el único orden total sin extremos, completo, y separable.

Un ejercicio al rescate

Caracterización del orden del continuo

 $\langle \mathbb{R}, < \rangle$ es, salvo isomorfismo el único orden total sin extremos, completo, y separable.

Ejercicio (*) (Suslin, 1917)

Probar que si cambiamos "separable" por la **ccc**, "toda familia de intervalos abiertos disjuntos es contable", sigue valiendo la caracterización.

Un ejercicio al rescate

Caracterización del orden del continuo

 $\langle \mathbb{R}, < \rangle$ es, salvo isomorfismo el único orden total sin extremos, completo, y separable.

Ejercicio (*) (Suslin, 1917)

Probar que si cambiamos "separable" por la **ccc**, "toda familia de intervalos abiertos disjuntos es contable", sigue valiendo la caracterización.

El enfoque correcto para pensar este problema involucra árboles.

Un ejercicio al rescate

Caracterización del orden del continuo

 $\langle \mathbb{R}, < \rangle$ es, salvo isomorfismo el único orden total sin extremos, completo, y separable.

Ejercicio (*) (Suslin, 1917)

Probar que si cambiamos "separable" por la **ccc**, "toda familia de intervalos abiertos disjuntos es contable", sigue valiendo la caracterización.

El enfoque correcto para pensar este problema involucra árboles.

Definición

- Un **árbol** es un poset estricto $\langle T, \sqsubset \rangle$ con primer elemento tal que $\{t \in T : t \sqsubset s\}$ es una \sqsubset -cadena.
- En un **árbol conjuntista**, $\{t \in T : t \sqsubset s\}$ está bien ordenado.

La verdadera incontabilidad: Árboles de Aronszajn

Teorema (Kurepa)

Un contraejemplo al Problema de Suslin equivale a hallar un **árbol de Suslin**: de altura ω_1 tal que toda cadena y toda anticadena es contable.

La verdadera incontabilidad: Árboles de Aronszajn

Teorema (Kurepa)

Un contraejemplo al Problema de Suslin equivale a hallar un **árbol de Suslin**: de altura ω_1 tal que toda cadena y toda anticadena es contable.

Aronszajn lo acercó con el auto hasta:

Ejemplo

Existe un árbol de altura ω_1 tal que toda cadena y todo **nivel** es contable.

La verdadera incontabilidad: Árboles de Aronszajn

Teorema (Kurepa)

Un contraejemplo al Problema de Suslin equivale a hallar un **árbol de Suslin**: de altura ω_1 tal que toda cadena y toda anticadena es contable.

Aronszajn lo acercó con el auto hasta:

Ejemplo

Existe un árbol de altura ω_1 tal que toda cadena y todo **nivel** es contable.

*** sucesiones fundamentales.

M. Fréchet director de Duro Kurepa (1935) y de Antonio Monteiro (1936).

Con iniciativa de Monteiro y dirección de Misha Cotlar se crea el Instituto de Matemática de la UNCuyo (1953).

Con iniciativa de Monteiro y dirección de Misha Cotlar se crea el Instituto de Matemática de la UNCuyo (1953).

- Jorge Bosch.
- Gregorio Klimovsky.
- Rodolfo Ricabarra.
- Oscar Varsavsky.

Con iniciativa de Monteiro y dirección de Misha Cotlar se crea el Instituto de Matemática de la UNCuyo (1953).

- Jorge Bosch.
- Gregorio Klimovsky.
- Rodolfo Ricabarra.
- Oscar Varsavsky.

EL TEOREMA DE ZORN Y LA EXISTENCIA DE FILTROS E IDEALES MAXIMALES EN LOS RETICULADOS DISTRIBUTIVOS

por Gregorio Klimovsky

Con iniciativa de Monteiro y dirección de Misha Cotlar se crea el Instituto de Matemática de la UNCuyo (1953).

- Jorge Bosch.
- Gregorio Klimovsky.
- Rodolfo Ricabarra.
- Oscar Varsavsky.

EL TEOREMA DE ZORN Y LA EXISTENCIA DE FILTROS E IDEALES MAXIMALES EN LOS RETICULADOS DISTRIBUTIVOS

por Gregorio Klimovsky

Un sueño que quedó trunco por el golpe militar de 1955.

Teoría de Conjuntos en Argentina: Ricabarra

En La Plata, "Locomotora" Ricabarra desarrolla un seminario sobre el problema de Suslin, "probablemente el seminario matemático mas importante que se haya desarrollado en el país" (Cotlar & Recht, 1985).

Teoría de Conjuntos en Argentina: Ricabarra

En La Plata, "Locomotora" Ricabarra desarrolla un seminario sobre el problema de Suslin, "probablemente el seminario matemático mas importante que se haya desarrollado en el país" (Cotlar & Recht, 1985).

Conjuntos ordenados y ramificados

Contribución al estudio del problema de Suslin (1960). Referencia ineludible sobre el estudio de árboles conjuntistas.

Teoría de Conjuntos en Argentina: Ricabarra

En La Plata, "Locomotora" Ricabarra desarrolla un seminario sobre el problema de Suslin, "probablemente el seminario matemático mas importante que se haya desarrollado en el país" (Cotlar & Recht, 1985).

Conjuntos ordenados y ramificados

Contribución al estudio del problema de Suslin (1960). Referencia ineludible sobre el estudio de árboles conjuntistas.

Lo citan:

- R.L. Vaught (Bull. Amer. Math. Soc., 1963, transcripción de charla). Existencia de familias de Kurepa y problema de dos cardinales.
- 2 F. Rowbottom (PhD thesis, Ann. Math. Log. 1971), problema de Kurepa.
- J. Silver (PSPUM XIII, AMS, 1971). Resolución del problema anterior.
- S. Todorčević (alumno de Kurepa).
- J. Larson (Handbook of History of Logic vol. 6).

Mandatos paternos

Thou shall not do sets.

Mandatos paternos

Thou shall not do sets.

"La Teoría de Conjuntos pasa de genio en genio... No se meta ahí".

Mandatos paternos

Thou shall not do sets.

"La Teoría de Conjuntos pasa de genio en genio... No se meta ahí".

Hoy

Román Sasyk.

Mandatos paternos

Thou shall not do sets.

"La Teoría de Conjuntos pasa de genio en genio... No se meta ahí".

Hoy

- Román Sasyk.
- **■** (¿?).

Mandatos paternos

Thou shall not do sets.

"La Teoría de Conjuntos pasa de genio en genio... No se meta ahí".

Hoy

- Román Sasyk.
- **■** (;?).

El futuro

- Azul Fatalini.
- Pedro Marún.
- Martín Moroni, Joel Kuperman, Matías Steinberg.

$$\langle \mathcal{P}(X), \subseteq \rangle \longleftrightarrow \langle \mathcal{P}(X), \cap \rangle$$

 $a \subseteq b \iff a \cap b = a.$

$$\begin{array}{ccc}
\langle \mathcal{P}(X), \subseteq \rangle & \longleftrightarrow & \langle \mathcal{P}(X), \cap \rangle \\
a \subseteq b & \Longleftrightarrow & a \cap b = a.
\end{array}$$

$$\begin{array}{ccc}
\langle A, \leqslant \rangle & \longleftrightarrow & \langle A, \cdot \rangle \\
a \leqslant b & \Longleftrightarrow & a \cdot b = a.
\end{array}$$

$$\begin{array}{cccc} \langle \mathcal{P}(X), \subseteq \rangle & \longleftrightarrow & \langle \mathcal{P}(X), \cap \rangle \\ a \subseteq b & \Longleftrightarrow & a \cap b = a. \\ \\ \langle A, \leqslant \rangle & \longleftrightarrow & \langle A, \cdot \rangle \\ a \leqslant b & \Longleftrightarrow & a \cdot b = a. \end{array}$$

De posets a grupoides (magmas) y viceversa

 $lacksquare \langle A, \leqslant
angle$ admite estructura $\langle A, \cdot
angle$.

$$\begin{array}{cccc} \langle \mathcal{P}(X), \subseteq \rangle & \longleftrightarrow & \langle \mathcal{P}(X), \cap \rangle \\ a \subseteq b & \Longleftrightarrow & a \cap b = a. \\ \\ \langle A, \leqslant \rangle & \longleftrightarrow & \langle A, \cdot \rangle \\ a \leqslant b & \Longleftrightarrow & a \cdot b = a. \end{array}$$

De posets a grupoides (magmas) y viceversa

- $\blacksquare \langle A, \leqslant \rangle$ admite estructura $\langle A, \cdot \rangle$.
- Semirretículo inferior ⇔ estructura conmutativa y asociativa.

$$\begin{array}{cccc} \langle \mathcal{P}(X), \subseteq \rangle & \longleftrightarrow & \langle \mathcal{P}(X), \cap \rangle \\ a \subseteq b & \Longleftrightarrow & a \cap b = a. \\ \\ \langle A, \leqslant \rangle & \longleftrightarrow & \langle A, \cdot \rangle \\ a \leqslant b & \Longleftrightarrow & a \cdot b = a. \end{array}$$

De posets a grupoides (magmas) y viceversa

- $\blacksquare \langle A, \leqslant \rangle$ admite estructura $\langle A, \cdot \rangle$.
- Semirretículo inferior ⇔ estructura conmutativa y asociativa.
- Todo poset con $|A| \ge 3$ admite estructura conmutativa.

$$\begin{array}{cccc} \langle \mathcal{P}(X), \subseteq \rangle & \longleftrightarrow & \langle \mathcal{P}(X), \cap \rangle \\ a \subseteq b & \Longleftrightarrow & a \cap b = a. \\ \\ \langle A, \leqslant \rangle & \longleftrightarrow & \langle A, \cdot \rangle \\ a \leqslant b & \Longleftrightarrow & a \cdot b = a. \end{array}$$

De posets a grupoides (magmas) y viceversa

- $\blacksquare \langle A, \leqslant \rangle$ admite estructura $\langle A, \cdot \rangle$.
- lacktriangle Semirretículo inferior \iff estructura conmutativa y asociativa.
- Todo poset con $|A| \ge 3$ admite estructura conmutativa.
- ¿Cuáles admiten estructura asociativa?

Posets Asociativos

Asociativo (el "Moño")

No asociativo (la "Corona")

Posets Asociativos

Asociativo (el "Moño")

No asociativo (la "Corona")

Lema

Los posemigrupos (aka "bandas regulares a derecha") forman una variedad.

$$x \cdot x = x$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
$$x \cdot y \cdot x = y \cdot x$$

Posets Asociativos

Asociativo (el "Moño")

No asociativo (la "Corona")

Lema

Los posemigrupos (aka "bandas regulares a derecha") forman una variedad.

⇒ {Posets asociativos} es cerrada por ultraproductos.

$$x \cdot x = x$$
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
$$x \cdot y \cdot x = y \cdot x$$

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Lema

Sean C_1 y C_2 cadenas sin último elemento tales que $C_1^* \sqcup C_2^*$ es asociativo. Entonces $cf(C_1) = cf(C_2)$.

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Lema

Sean C_1 y C_2 cadenas sin último elemento tales que $C_1^* \sqcup C_2^*$ es asociativo. Entonces $cf(C_1) = cf(C_2)$.

Prueba del Teorema.

 $\omega_1^* \sqcup \omega_1^*$ es asociativo.

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Lema

Sean C_1 y C_2 cadenas sin último elemento tales que $C_1^* \sqcup C_2^*$ es asociativo. Entonces $cf(C_1) = cf(C_2)$.

Prueba del Teorema.

 $\omega_1^*\sqcup\omega_1^*$ es asociativo. Por Löwenheim-Skolem, tomo $\langle C,\leqslant
angle \preccurlyeq \langle \omega_1,\leqslant
angle$ contable.

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Lema

Sean C_1 y C_2 cadenas sin último elemento tales que $C_1^* \sqcup C_2^*$ es asociativo. Entonces $cf(C_1) = cf(C_2)$.

Prueba del Teorema.

 $\omega_1^*\sqcup\omega_1^*$ es asociativo. Por Löwenheim-Skolem, tomo $\langle C,\leqslant \rangle \preccurlyeq \langle \omega_1,\leqslant \rangle$ contable.

Luego $C^* \sqcup \omega_1^* \preceq \omega_1^* \sqcup \omega_1^*$.

Teorema

La clase de los posets asociativos no es axiomatizable en primer orden.

La primera prueba se basó en un concepto conjuntista

Lema

Sean C_1 y C_2 cadenas sin último elemento tales que $C_1^* \sqcup C_2^*$ es asociativo. Entonces $cf(C_1) = cf(C_2)$.

Prueba del Teorema.

 $\omega_1^* \sqcup \omega_1^*$ es asociativo. Por Löwenheim-Skolem, tomo $\langle C, \leqslant \rangle \preccurlyeq \langle \omega_1, \leqslant \rangle$ contable.

Luego $C^* \sqcup \omega_1^* \preccurlyeq \omega_1^* \sqcup \omega_1^*$.

Pero $C^*\sqcup\omega_1^*$ no es asociativo, pues $\mathrm{cf}(C)=\omega\neq\omega_1=\mathrm{cf}(\omega_1)$ y deberían coincidir por el Lema.

Enter Universal Algebra

Luego, una idea algebraica limpió el panorama

Lema (Petrovich, PST)

Si $\{a,b\}$ no tiene ínfimo, existen $a'\leqslant a$ y $b'\leqslant b$ encima de todas las cotas inferiores de $\{a,b\}$, tales que $a'\downarrow y$ $b'\downarrow$ son isomorfos.

Enter Universal Algebra

Luego, una idea algebraica limpió el panorama

Lema (Petrovich, PST)

Si $\{a,b\}$ no tiene ínfimo, existen $a'\leqslant a$ y $b'\leqslant b$ encima de todas las cotas inferiores de $\{a,b\}$, tales que $a'\downarrow y$ $b'\downarrow$ son isomorfos.

Uniones de cadenas

Enter Universal Algebra

Luego, una idea algebraica limpió el panorama

Lema (Petrovich, PST)

Si $\{a,b\}$ no tiene ínfimo, existen $a'\leqslant a$ y $b'\leqslant b$ encima de todas las cotas inferiores de $\{a,b\}$, tales que $a'\downarrow y$ $b'\downarrow$ son isomorfos.

Uniones de cadenas

El picaflor

Teorema (Kuperman, Petrovich, PST)

Son equivalentes:

- Todo árbol con ramas finitas es asociativo.
- El Axioma de Elección.

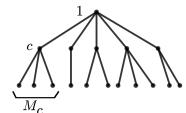
Teorema (Kuperman, Petrovich, PST)

Son equivalentes:

- Todo árbol con ramas finitas es asociativo.
- El Axioma de Elección.

Demostración.

(⇒)



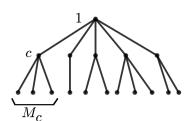
Teorema (Kuperman, Petrovich, PST)

Son equivalentes:

- Todo árbol con ramas finitas es asociativo.
- El Axioma de Elección.

Demostración.

 (\Rightarrow)



(←) Prueba original automática. Sólo árboles de 3 niveles.

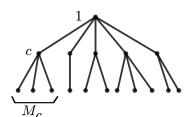
Teorema (Kuperman, Petrovich, PST)

Son equivalentes:

- Todo árbol con ramas finitas es asociativo.
- El Axioma de Elección.

Demostración.

 (\Rightarrow)



(⇐) Prueba original automática. Sólo árboles de 3 niveles.

Caso general y más: Trabajo Final de Joel Kuperman (en progreso).

Recién comenzado el S.XX, había preocupaciones con respecto a

Recién comenzado el S.XX, había preocupaciones con respecto a

- el concepto de "función arbitraria", que de hecho es una preocupación sobre la indeterminación del conjunto de partes (e.g. $\mathcal{P}(\mathbb{R} \times \mathbb{R})$), y
- el "Axioma de Zermelo".

Recién comenzado el S.XX, había preocupaciones con respecto a

- el concepto de "función arbitraria", que de hecho es una preocupación sobre la indeterminación del conjunto de partes (e.g. $\mathcal{P}(\mathbb{R} \times \mathbb{R})$), y
- el "Axioma de Zermelo".

En Francia se tratan de delinear familias de funciones con buen comportamiento.

Recién comenzado el S.XX, había preocupaciones con respecto a

- el concepto de "función arbitraria", que de hecho es una preocupación sobre la indeterminación del conjunto de partes (e.g. $\mathcal{P}(\mathbb{R} \times \mathbb{R})$), y
- el "Axioma de Zermelo".

En Francia se tratan de delinear familias de funciones con buen comportamiento.

R.-L. Baire

o continuas,

Recién comenzado el S.XX, había preocupaciones con respecto a

- el concepto de "función arbitraria", que de hecho es una preocupación sobre la indeterminación del conjunto de partes (e.g. $\mathcal{P}(\mathbb{R} \times \mathbb{R})$), y
- el "Axioma de Zermelo".

En Francia se tratan de delinear familias de funciones con buen comportamiento.

R.-L. Baire

- o continuas,
- 1 límite puntual de continuas,

Recién comenzado el S.XX, había preocupaciones con respecto a

- el concepto de "función arbitraria", que de hecho es una preocupación sobre la indeterminación del conjunto de partes (e.g. $\mathcal{P}(\mathbb{R} \times \mathbb{R})$), y
- el "Axioma de Zermelo".

En Francia se tratan de delinear familias de funciones con buen comportamiento.

R.-L. Baire

- o continuas,
- Iímite puntual de continuas,
- Iímite puntual de clase-1,
- 3 ... etcétera.

Primer paper sobre definibilidad de funciones (1905)

Acá tenemos a un francés misterioso [11] aplicando diagonalización:

Nous pouvons donc appliquer le procédé de M. Cantor aux fonctions f(t, x); posons $\varphi(x) = 0$, sauf quand f(x, x) a un sens et est égal à 0, auquel cas nous prendrons $\varphi(x) = 1$. Il est évident que $\varphi(x)$ est représentable analytiquement et n'est pas de classe égale ou inférieure à α . Donc il existe des fonctions de toute classe; c'est-à-dire

Primer paper sobre definibilidad de funciones (1905)

Acá tenemos a un francés misterioso [11] aplicando diagonalización:

Nous pouvons donc appliquer le procédé de M. Cantor aux fonctions f(t, x); posons $\varphi(x) = 0$, sauf quand f(x, x) a un sens et est égal à 0, auquel cas nous prendrons $\varphi(x) = 1$. Il est évident que $\varphi(x)$ est représentable analytiquement et n'est pas de classe égale ou inférieure à α . Donc il existe des fonctions de toute classe; c'est-à-dire

 \ldots y prueba uno de los primeros resultados de jerarquías que conozco: existen funciones propiamente α -Baire/Borel para cada $\alpha < \omega_1$.

Primer paper sobre definibilidad de funciones (1905)

Acá tenemos a un francés misterioso [11] aplicando diagonalización:

Nous pouvons donc appliquer le procédé de M. Cantor aux fonctions f(t, x); posons $\varphi(x) = 0$, sauf quand f(x, x) a un sens et est égal à 0, auquel cas nous prendrons $\varphi(x) = 1$. Il est évident que $\varphi(x)$ est représentable analytiquement et n'est pas de classe égale ou inférieure à α . Donc il existe des fonctions de toute classe; c'est-à-dire

...y prueba uno de los primeros resultados de jerarquías que conozco: existen funciones propiamente α -Baire/Borel para cada $\alpha < \omega_1$.

Es el comienzo de la Teoría de Conjuntos Descriptiva (TCD)

Lema (Lebesgue 1905)

Sea $B \subseteq \mathbb{R}^2$ Borel. Entonces $\pi_1(B) \subseteq \mathbb{R}$ es Borel.

Teorema

Si $f: \mathbb{R}^2 \to \mathbb{R}$ es representable analíticamente y $\forall x \exists ! y \, f(x,y) = 0$, entonces la función definida $g \, \mathsf{por} \, f(x,g(x)) = 0$ es representable analíticamente.

Lema (Lebesgue 1905)

Sea $B \subseteq \mathbb{R}^2$ Borel. Entonces $\pi_1(B) \subseteq \mathbb{R}$ es Borel.

Teorema

Si $f: \mathbb{R}^2 \to \mathbb{R}$ es representable analíticamente y $\forall x \exists ! y \, f(x,y) = 0$, entonces la función definida g por f(x,g(x)) = 0 es representable analíticamente.

Suslin (sí, Miguelito Suslin de antes) descubre que

Lema (Lebesgue 1905)

Sea $B \subseteq \mathbb{R}^2$ Borel. Entonces $\pi_1(B) \subseteq \mathbb{R}$ es Borel.

Teorema

Si $f: \mathbb{R}^2 \to \mathbb{R}$ es representable analíticamente y $\forall x \exists ! y \, f(x,y) = 0$, entonces la función definida g por f(x,g(x)) = 0 es representable analíticamente.

Suslin (sí, Miguelito Suslin de antes) descubre que el Lema es falso.

Lema (Lebesgue 1905)

Sea $B \subseteq \mathbb{R}^2$ Borel. Entonces $\pi_1(B) \subseteq \mathbb{R}$ es Borel.

Teorema

Si $f: \mathbb{R}^2 \to \mathbb{R}$ es representable analíticamente y $\forall x \, \exists ! y \, f(x,y) = 0$, entonces la función definida $g \, \mathsf{por} f(x,g(x)) = 0$ es representable analíticamente.

Suslin (sí, Miguelito Suslin de antes) descubre que el Lema es falso.

¡Pero por favor!

¿Qué interés tenemos los lógicos en las proyecciones de Borel, o para el caso, en los conjuntos Borel?

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Podemos pensarlo como el espacio de estructuras binarias $\langle \omega, R \rangle$ sobre los naturales.

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}}={}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}}={}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Podemos pensarlo como el espacio de estructuras binarias $\langle \omega, R \rangle$ sobre los naturales.

Para cada $n, m \in \omega$, el conjunto $\{R : (n, m) \in R\}$ es un clopen.

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Podemos pensarlo como el espacio de estructuras binarias $\langle \omega, R \rangle$ sobre los naturales.

Para cada $n, m \in \omega$, el conjunto $\{R : (n, m) \in R\}$ es un clopen. De hecho, los cerrados jestán caracterizados por árboles!

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Podemos pensarlo como el espacio de estructuras binarias $\langle \omega, R \rangle$ sobre los naturales.

Para cada $n, m \in \omega$, el conjunto $\{R : (n, m) \in R\}$ es un clopen. De hecho, los cerrados jestán caracterizados por árboles!

Ejercicio (bona fide)

Probar que el conjunto de los órdenes totales sobre $\ensuremath{\mathbb{N}}$ es un cerrado.

Teorema de Isomorfismo

Los conjuntos Borel de \mathbb{R} , [0,1], $2^{\mathbb{N}} = {}^{\omega}2$ y $\mathbb{N}^{\mathbb{N}} = {}^{\omega}\omega$ son isomorfos.

Tomemos el espacio de Cantor

$$2^{\mathbb{N}} \cong {}^{\omega \times \omega} 2 \cong \mathcal{P}(\omega \times \omega)$$

Podemos pensarlo como el espacio de estructuras binarias $\langle \omega, R \rangle$ sobre los naturales.

Para cada $n, m \in \omega$, el conjunto $\{R : (n, m) \in R\}$ es un clopen. De hecho, los cerrados jestán caracterizados por árboles!

Ejercicio (bona fide)

Probar que el conjunto de los órdenes totales sobre $\ensuremath{\mathbb{N}}$ es un cerrado.

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}.$$

$$\forall n: n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R: (n, n) \in R\}$$

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}$$

$$\downarrow \bigcap_{n} \varphi(n)$$

$$\forall n: n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R: (n, n) \in R\}$$

$$\downarrow \bigwedge_n \varphi(n)$$

Los conjuntos Borel están relacionados con los conjuntos definibles por fórmulas en la lógica $\mathcal{L}_{\omega_1,\omega}$.

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}$$

$$\downarrow \bigcap_{n} \varphi(n)$$

Los conjuntos Borel están relacionados con los conjuntos definibles por fórmulas en la lógica $\mathcal{L}_{\omega_1,\omega}$.

¿Y los **conjuntos de Suslin**? Si \mathcal{A} está definida por una fórmula Ψ ,

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}$$

$$\downarrow \\ \bigwedge_n \varphi(n)$$

Los conjuntos Borel están relacionados con los conjuntos definibles por fórmulas en la lógica $\mathcal{L}_{\omega_1,\omega}$.

¿Y los **conjuntos de Suslin**? Si \mathcal{A} está definida por una fórmula Ψ ,

$$\pi_1(\mathcal{A}) = \{R \in \mathcal{P}(\omega \times \omega) \mid \exists S \in \mathcal{P}(\omega \times \omega) : (R, S) \in \mathcal{A}\}$$

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}$$

$$\downarrow \bigcap_{n} \varphi(n)$$

Los conjuntos Borel están relacionados con los conjuntos definibles por fórmulas en la lógica $\mathcal{L}_{\omega_1,\omega}$.

¿Y los **conjuntos de Suslin**? Si \mathcal{A} está definida por una fórmula Ψ ,

$$\pi_1(\mathcal{A}) = \{ R \in \mathcal{P}(\omega \times \omega) \mid \exists S \in \mathcal{P}(\omega \times \omega) : (R, S) \in \mathcal{A} \}$$
$$R \in \pi_1(\mathcal{A}) \iff \exists S \subseteq \omega \times \omega : \Psi(R, S)$$

$$\forall n : n \ R \ n \longrightarrow \bigcap_{n \in \omega} \{R : (n, n) \in R\}$$

$$\downarrow \bigcap_{n} \varphi(n)$$

Los conjuntos Borel están relacionados con los conjuntos definibles por fórmulas en la lógica $\mathcal{L}_{\omega_1,\omega}$.

¿Y los **conjuntos de Suslin**? Si $\mathcal A$ está definida por una fórmula Ψ ,

$$\pi_1(\mathcal{A}) = \{ R \in \mathcal{P}(\omega \times \omega) \mid \exists S \in \mathcal{P}(\omega \times \omega) : (R, S) \in \mathcal{A} \}$$
$$R \in \pi_1(\mathcal{A}) \iff \exists S \subseteq \omega \times \omega : \Psi(R, S)$$

... se corresponden con una cuantificación existencial de segundo orden.

Teorema (de Separación de Luzin)

Si A y B son conjuntos de Suslin disjuntos ($A \subseteq B^c$), pueden separarse con un Borel: hay C tal que $A \subseteq C \subseteq B^c$.

Teorema (de Separación de Luzin)

Si A y B son conjuntos de Suslin disjuntos ($A \subseteq B^c$), pueden separarse con un Borel: hay C tal que $A \subseteq C \subseteq B^c$.

$$x \in A \iff \exists R : \varphi(R, x) \qquad x \in B \iff \exists S : \psi(S, x)$$

 $\exists R : \varphi(R, x) \implies \forall S : \psi(S, x)$

Teorema (de Separación de Luzin)

Si A y B son conjuntos de Suslin disjuntos ($A \subseteq B^c$), pueden separarse con un Borel: hay C tal que $A \subseteq C \subseteq B^c$.

$$x \in A \iff \exists R : \varphi(R, x) \qquad x \in B \iff \exists S : \psi(S, x)$$

 $\exists R : \varphi(R, x) \implies \forall S : \psi(S, x)$

Entonces hay un interpolante $\theta(x)$ tal que

$$\exists R : \varphi(R, x) \implies \theta(x) \implies \forall S : \psi(S, x).$$

Teorema (de Separación de Luzin)

Si A y B son conjuntos de Suslin disjuntos ($A \subseteq B^c$), pueden separarse con un Borel: hay C tal que $A \subseteq C \subseteq B^c$.

$$x \in A \iff \exists R : \varphi(R, x) \qquad x \in B \iff \exists S : \psi(S, x)$$

 $\exists R : \varphi(R, x) \implies \forall S : \psi(S, x)$

Entonces hay un interpolante $\theta(x)$ tal que

$$\exists R : \varphi(R, x) \implies \theta(x) \implies \forall S : \psi(S, x).$$

De hecho, se puede probar de este modo una versión para estructuras contables del Teorema de Interpolación para $\mathcal{L}_{\omega_1,\omega}$ de López-Escobar.

Aplicaciones de la TCD a Computación

Sobre procesos computacionales (sistemas de transición etiquetados = marcos de Kripke), se puede definir la noción de "comportarse igual".

Aplicaciones de la TCD a Computación

Sobre procesos computacionales (sistemas de transición etiquetados = marcos de Kripke), se puede definir la noción de "comportarse igual".

Bisimulación

R binaria tal que $s_1 R t_1$ implica:

- si $s_1 \xrightarrow{a} s_2$, entonces existe t_2 tal que $t_1 \xrightarrow{a} t_2$ y $s_2 R t_2$, y
- si $t_1 \xrightarrow{a} t_2$, entonces existe s_2 tal que $s_1 \xrightarrow{a} s_2$ y $s_2 R t_2$.

Aplicaciones de la TCD a Computación

Sobre procesos computacionales (sistemas de transición etiquetados = marcos de Kripke), se puede definir la noción de "comportarse igual".

Bisimulación

R binaria tal que $s_1 R t_1$ implica:

- si $s_1 \xrightarrow{a} s_2$, entonces existe t_2 tal que $t_1 \xrightarrow{a} t_2$ y $s_2 R t_2$, y
- si $t_1 \xrightarrow{a} t_2$, entonces existe s_2 tal que $s_1 \xrightarrow{a} s_2$ y $s_2 R t_2$.

Si hay probabilidades involucradas, pensemos que R es de equivalencia y esencialmente se debe caer con la misma chance a las R-clases.

Lógica de Larsen y Skou (LS)

$$\varphi \equiv \top \mid \varphi_1 \wedge \varphi_2 \mid \langle a \rangle_q \psi, \qquad q \in \mathbb{Q}$$

Lógica de Larsen y Skou (LS)

$$\varphi \equiv \top \mid \varphi_1 \wedge \varphi_2 \mid \langle a \rangle_q \psi, \qquad q \in \mathbb{Q}$$

Caracterización Lógica de la Bisimulación (Danos et al.)

Sean s, t estados de un proceso probabilista sobre un espacio de Suslin. Son equivalentes:

- **E**xiste una bisimulación R tal que $s R t (s \sim t)$.
- s y t satisfacen las mismas fórmulas de la lógica LS ($s \equiv_{LS} t$).

Lógica de Larsen y Skou (LS)

$$\varphi \equiv \top \mid \varphi_1 \wedge \varphi_2 \mid \langle a \rangle_q \psi, \qquad q \in \mathbb{Q}$$

Caracterización Lógica de la Bisimulación (Danos et al.)

Sean s, t estados de un proceso probabilista sobre un espacio de Suslin. Son equivalentes:

- **E**xiste una bisimulación R tal que $s R t (s \sim t)$.
- s y t satisfacen las mismas fórmulas de la lógica LS ($s \equiv_{LS} t$).

Otra vez, ¿por qué Suslin?

Lógica de Larsen y Skou (LS)

$$\varphi \equiv \top \mid \varphi_1 \wedge \varphi_2 \mid \langle a \rangle_q \psi, \qquad q \in \mathbb{Q}$$

Caracterización Lógica de la Bisimulación (Danos et al.)

Sean s, t estados de un proceso probabilista sobre un espacio de Suslin. Son equivalentes:

- **E**xiste una bisimulación R tal que $s R t (s \sim t)$.
- s y t satisfacen las mismas fórmulas de la lógica LS ($s \equiv_{LS} t$).

Otra vez, ¿por qué Suslin? Por la definibilidad.

Ejemplo (PST)

Existe un contraejemplo usando un conjunto no medible.

Zhou define un operador \mathcal{O} sobre relaciones de equivalencia que refina \equiv_{LS} hasta llegar a \sim .

Zhou define un operador $\mathcal O$ sobre relaciones de equivalencia que refina \equiv_{LS} hasta llegar a \sim .

Teorema (Moroni, PST)

Consistentemente, existe un proceso probabilista sobre un subconjunto de los reales que requiere ω_1 iterados de $\mathcal O$ para alcanzar \sim .

Zhou define un operador $\mathcal O$ sobre relaciones de equivalencia que refina \equiv_{LS} hasta llegar a \sim .

Teorema (Moroni, PST)

Consistentemente, existe un proceso probabilista sobre un subconjunto de los reales que requiere ω_1 iterados de $\mathcal O$ para alcanzar \sim .

Ingredientes extra

- Sucesiones fundamentales.
- *Q*-conjunto: incontable y todos sus subconjuntos son Borel relativos.

Zhou define un operador $\mathcal O$ sobre relaciones de equivalencia que refina \equiv_{LS} hasta llegar a \sim .

Teorema (Moroni, PST)

Consistentemente, existe un proceso probabilista sobre un subconjunto de los reales que requiere ω_1 iterados de $\mathcal O$ para alcanzar \sim .

Ingredientes extra

- Sucesiones fundamentales.
- Q-conjunto: incontable y todos sus subconjuntos son Borel relativos.

La mugre no medible es necesaria.

Zhou define un operador $\mathcal O$ sobre relaciones de equivalencia que refina \equiv_{LS} hasta llegar a \sim .

Teorema (Moroni, PST)

Consistentemente, existe un proceso probabilista sobre un subconjunto de los reales que requiere ω_1 iterados de $\mathcal O$ para alcanzar \sim .

Ingredientes extra

- Sucesiones fundamentales.
- Q-conjunto: incontable y todos sus subconjuntos son Borel relativos.

La mugre no medible es necesaria.

Teorema (Pachl, PST)

La igualdad $\sim = \equiv_{LS}$ vale para procesos probabilistas sobre conjuntos universalmente medibles.

Tiro un ejemplo aunque sea.

Tiro un ejemplo aunque sea.

Particiones de la unidad

Sea B una AB completa. Una **partición** es $X \subseteq B$ con elementos incompatibles dos a dos tal que $\bigvee X = 1$.

Tiro un ejemplo aunque sea.

Particiones de la unidad

Sea B una AB completa. Una **partición** es $X \subseteq B$ con elementos incompatibles dos a dos tal que $\bigvee X = 1$.

Teorema

Existe un árbol de Suslin \iff existe una AB completa sin átomos, tal que toda partición es contable (**ccc**) y toda familia contable de particiones admite refinamiento común (\aleph_0 -distributiva).

Tiro un ejemplo aunque sea.

Particiones de la unidad

Sea B una AB completa. Una **partición** es $X \subseteq B$ con elementos incompatibles dos a dos tal que $\bigvee X = 1$.

Teorema

Existe un árbol de Suslin \iff existe una AB completa sin átomos, tal que toda partición es contable (**ccc**) y toda familia contable de particiones admite refinamiento común (\aleph_0 -distributiva).

Es hora para develar la cruel verdad.

Tiro un ejemplo aunque sea.

Particiones de la unidad

Sea B una AB completa. Una **partición** es $X \subseteq B$ con elementos incompatibles dos a dos tal que $\bigvee X = 1$.

Teorema

Existe un árbol de Suslin \iff existe una AB completa sin átomos, tal que toda partición es contable (**ccc**) y toda familia contable de particiones admite refinamiento común (\aleph_0 -distributiva).

Es hora para develar la cruel verdad.

Teorema (Jech, Tennenbaum, Solovay)

La existencia de un árbol de Suslin es independiente de ZFC.

El resultado de independencia anterior se probó usando **forzamiento** o *forcing*.

El resultado de independencia anterior se probó usando **forzamiento** o *forcing*.

Último homenaje a AB

Las propiedades de las extensiones mediante forzamiento dependen de AB "completación" del poset usado.

El resultado de independencia anterior se probó usando **forzamiento** o *forcing*.

Último homenaje a AB

Las propiedades de las extensiones mediante forzamiento dependen de AB "completación" del poset usado.

- El AB es ccc ⇔ los cardinales "se preservan".
- \blacksquare El AB es κ -distributiva \iff no hay nuevas κ -sucesiones de ordinales.

El resultado de independencia anterior se probó usando **forzamiento** o *forcing*.

Último homenaje a AB

Las propiedades de las extensiones mediante forzamiento dependen de AB "completación" del poset usado.

- El AB es ccc ⇔ los cardinales "se preservan".
- lacktriangle El AB es κ -distributiva \iff no hay nuevas κ -sucesiones de ordinales.

El forzamiento sí es un invento de genio pero se puede entender lo suficientemente bien para explicárselo a una computadora.

Logros en 2019–2020 (Gunther, Pagano, PST [4])

- 1 Resultados conjuntistas básicos incorporados a ZF-Constructible (Paulson [13]) → distribuido con el software.
- 2 Probamos que las extensiones genéricas de modelos contables transitivos de ZF también lo son (respectivamente, sumando AC).
- 3 Formalizamos la noción de forzamiento que añade un real de Cohen, probando la existencia de una extensión no trivial con los mismos ordinales.

https://cs.famaf.unc.edu.ar/~pedro/forcing/

Lo nuevo (Gunther, Pagano, PST, Steinberg)

- Formalización del Lema del Sistema Δ de Šanin. https://www.isa-afp.org/entries/Delta_System_Lemma.html
- Preservación de cardinales en extensiones ccc.

https://cs.famaf.unc.edu.ar/~pedro/forcing/

Lo nuevo (Gunther, Pagano, PST, Steinberg)

- Formalización del Lema del Sistema △ de Šanin.

 https://www.isa-afp.org/entries/Delta_System_Lemma.html
- Preservación de cardinales en extensiones ccc.
- (En progreso) Independencia de *CH* (cf. Han & van Doorn [5]).
- (En progreso) Identificación de fragmento suficiente de *ZFC* para forzar ¬*CH*.

https://cs.famaf.unc.edu.ar/~pedro/forcing/

Lo nuevo (Gunther, Pagano, PST, Steinberg)

- Formalización del Lema del Sistema Δ de Šanin. https://www.isa-afp.org/entries/Delta_System_Lemma.html
- Preservación de cardinales en extensiones ccc.
- (En progreso) Independencia de *CH* (cf. Han & van Doorn [5]).
- (En progreso) Identificación de fragmento suficiente de ZFC para forzar ¬CH.

Más en la sesión de Set Theory and its Interactions del CLAM 2021 online!

Lectura recomendada

Básica (muy)

- Fraenkel, Abstract Set Theory [3].
- Moschovakis, Notes on Set Theory [12] (con intro a TCD).

Lectura recomendada

Básica (muy)

- Fraenkel, Abstract Set Theory [3].
- Moschovakis, *Notes on Set Theory* [12] (con intro a TCD).

Intermedia (lo que ya saben y un poco más)

- Cignoli, Teoría Axiomática de Conjuntos: Una Introducción [2].
- Just y Weese, Discovering Modern Set Theory [7].
- Kunen, Set Theory (2013) [10].
- Kechris, Classical Descriptive Set Theory [8].
- Jech, Set Theory (Third Millennium Edition) [6].

¡Gracias!

Bibliografía I

- [1] P.S. ALEKSANDROV, Pages from an autobiography, *Russ. Math. Surv.* **34**: 267–302 (1979).
- [2] R. CIGNOLI, "Teoría axiomática de conjuntos: Una introducción", number 8 in Cursos de grado, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: 146 (2016).
- [3] A.A. Fraenkel, "Abstract Set Theory", Studies in Logic and Foundations of Mathematics, North-Holland, Amsterdam (1961), second edition.
- [4] E. GUNTHER, M. PAGANO, P. SÁNCHEZ TERRAF, Formalization of Forcing in Isabelle/ZF, arXiv e-prints, in: N. Peltier, V. Sofronie-Stokkermans (Eds.), Automated Reasoning. 10th International Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part II, Lecture Notes in Artificial Intelligence 12167, Springer International Publishing: 221–235 (2020).

Bibliografía II

- [5] J.M. HAN, F. VAN DOORN, A Formalization of Forcing and the Unprovability of the Continuum Hypothesis, in: J. Harrison, J. O'Leary, A. Tolmach (Eds.), 10th International Conference on Interactive Theorem Proving (ITP 2019), Leibniz International Proceedings in Informatics (LIPIcs) 141, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany: 19:1–19:19 (2019).
- [6] T. JECH, "Set Theory. The Millennium Edition", Springer Monographs in Mathematics, Springer-Verlag (2002), third edition. Corrected fourth printing, 2006.
- [7] W. JUST, M. WEESE, "Discovering Modern Set Theory. I", Grad. Studies in Mathematics 8, American Mathematical Society (1996).
- [8] A.S. KECHRIS, "Classical Descriptive Set Theory", Graduate Texts in Mathematics 156, Springer-Verlag (1994).
- [9] K. KUNEN, "Set theory: An Introduction to Independence Proofs", Studies in logic and the foundations of mathematics, Elsevier Science, Amsterdam, Lausanne, New York (1980).

Bibliografía III

- [10] K. KUNEN, "Set Theory", Studies in Logic, College Publications (2011), second edition. Revised edition, 2013.
- [11] H. LEBESGUE, Sur les fonctions représentables analytiquement, *Journ. de Math.* (6) 1: 139–216 (1905).
- [12] Y. MOSCHOVAKIS, "Notes on Set Theory", Springer Texts in Electrical Engineering, Springer-Verlag (1994).
- [13] L.C. PAULSON, The relative consistency of the axiom of choice mechanized using Isabelle/ZF, LMS Journal of Computation and Mathematics 6: 198–248 (2003).

No estacionarios $<_R^1 \omega_1$

Teorema

Sea $X \subseteq \omega_1$ incontable. Son equivalentes:

- **1** Existe $f: X \to \omega_1$ invectiva regresiva.
- **2** Existe club $C \subseteq \omega_1$ tal que $C \cap X = \emptyset$, $0 \in C$, para todos $\delta \in C$ y $\alpha \in [\delta, \delta)$, $A_{\alpha}^{\delta} \geq 0$,

donde A_{α}^{δ} están dados por la siguiente recursion:

$$\begin{split} A^{\delta}_{\delta} &:= 0 \\ A^{\delta}_{\alpha+1} &:= A^{\delta}_{\alpha} + 1 - \chi_X(\alpha+1) \\ A^{\delta}_{\gamma} &:= \liminf_{\alpha \leq \gamma} A^{\delta}_{\alpha} - \chi_X(\gamma) \end{split} \qquad (\gamma \textit{ límite})$$