Theory OrdQuant

theory OrdQuant
imports Ordinal
(*  Title:      ZF/OrdQuant.thy
    Authors:    Krzysztof Grabczewski and L C Paulson
*)

section ‹Special quantifiers›

theory OrdQuant imports Ordinal begin

subsection ‹Quantifiers and union operator for ordinals›

definition
  (* Ordinal Quantifiers *)
  oall :: "[i, i => o] => o"  where
    "oall(A, P) == ∀x. x<A ⟶ P(x)"

definition
  oex :: "[i, i => o] => o"  where
    "oex(A, P)  == ∃x. x<A & P(x)"

definition
  (* Ordinal Union *)
  OUnion :: "[i, i => i] => i"  where
    "OUnion(i,B) == {z: ⋃x∈i. B(x). Ord(i)}"

syntax
  "_oall"     :: "[idt, i, o] => o"        (‹(3∀_<_./ _)› 10)
  "_oex"      :: "[idt, i, o] => o"        (‹(3∃_<_./ _)› 10)
  "_OUNION"   :: "[idt, i, i] => i"        (‹(3⋃_<_./ _)› 10)
translations
  "∀x<a. P"  "CONST oall(a, λx. P)"
  "∃x<a. P"  "CONST oex(a, λx. P)"
  "⋃x<a. B"  "CONST OUnion(a, λx. B)"


subsubsection ‹simplification of the new quantifiers›


(*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize
  is proved.  Ord_atomize would convert this rule to
    x < 0 ==> P(x) == True, which causes dire effects!*)
lemma [simp]: "(∀x<0. P(x))"
by (simp add: oall_def)

lemma [simp]: "~(∃x<0. P(x))"
by (simp add: oex_def)

lemma [simp]: "(∀x<succ(i). P(x)) <-> (Ord(i) ⟶ P(i) & (∀x<i. P(x)))"
apply (simp add: oall_def le_iff)
apply (blast intro: lt_Ord2)
done

lemma [simp]: "(∃x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (∃x<i. P(x))))"
apply (simp add: oex_def le_iff)
apply (blast intro: lt_Ord2)
done

subsubsection ‹Union over ordinals›

lemma Ord_OUN [intro,simp]:
     "[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(⋃x<A. B(x))"
by (simp add: OUnion_def ltI Ord_UN)

lemma OUN_upper_lt:
     "[| a<A;  i < b(a);  Ord(⋃x<A. b(x)) |] ==> i < (⋃x<A. b(x))"
by (unfold OUnion_def lt_def, blast )

lemma OUN_upper_le:
     "[| a<A;  i≤b(a);  Ord(⋃x<A. b(x)) |] ==> i ≤ (⋃x<A. b(x))"
apply (unfold OUnion_def, auto)
apply (rule UN_upper_le )
apply (auto simp add: lt_def)
done

lemma Limit_OUN_eq: "Limit(i) ==> (⋃x<i. x) = i"
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord)

(* No < version of this theorem: consider that @{term"(⋃i∈nat.i)=nat"}! *)
lemma OUN_least:
     "(!!x. x<A ==> B(x) ⊆ C) ==> (⋃x<A. B(x)) ⊆ C"
by (simp add: OUnion_def UN_least ltI)

lemma OUN_least_le:
     "[| Ord(i);  !!x. x<A ==> b(x) ≤ i |] ==> (⋃x<A. b(x)) ≤ i"
by (simp add: OUnion_def UN_least_le ltI Ord_0_le)

lemma le_implies_OUN_le_OUN:
     "[| !!x. x<A ==> c(x) ≤ d(x) |] ==> (⋃x<A. c(x)) ≤ (⋃x<A. d(x))"
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN)

lemma OUN_UN_eq:
     "(!!x. x ∈ A ==> Ord(B(x)))
      ==> (⋃z < (⋃x∈A. B(x)). C(z)) = (⋃x∈A. ⋃z < B(x). C(z))"
by (simp add: OUnion_def)

lemma OUN_Union_eq:
     "(!!x. x ∈ X ==> Ord(x))
      ==> (⋃z < ⋃(X). C(z)) = (⋃x∈X. ⋃z < x. C(z))"
by (simp add: OUnion_def)

(*So that rule_format will get rid of this quantifier...*)
lemma atomize_oall [symmetric, rulify]:
     "(!!x. x<A ==> P(x)) == Trueprop (∀x<A. P(x))"
by (simp add: oall_def atomize_all atomize_imp)

subsubsection ‹universal quantifier for ordinals›

lemma oallI [intro!]:
    "[| !!x. x<A ==> P(x) |] ==> ∀x<A. P(x)"
by (simp add: oall_def)

lemma ospec: "[| ∀x<A. P(x);  x<A |] ==> P(x)"
by (simp add: oall_def)

lemma oallE:
    "[| ∀x<A. P(x);  P(x) ==> Q;  ~x<A ==> Q |] ==> Q"
by (simp add: oall_def, blast)

lemma rev_oallE [elim]:
    "[| ∀x<A. P(x);  ~x<A ==> Q;  P(x) ==> Q |] ==> Q"
by (simp add: oall_def, blast)


(*Trival rewrite rule.  @{term"(∀x<a.P)<->P"} holds only if a is not 0!*)
lemma oall_simp [simp]: "(∀x<a. True) <-> True"
by blast

(*Congruence rule for rewriting*)
lemma oall_cong [cong]:
    "[| a=a';  !!x. x<a' ==> P(x) <-> P'(x) |]
     ==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))"
by (simp add: oall_def)


subsubsection ‹existential quantifier for ordinals›

lemma oexI [intro]:
    "[| P(x);  x<A |] ==> ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done

(*Not of the general form for such rules... *)
lemma oexCI:
   "[| ∀x<A. ~P(x) ==> P(a);  a<A |] ==> ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done

lemma oexE [elim!]:
    "[| ∃x<A. P(x);  !!x. [| x<A; P(x) |] ==> Q |] ==> Q"
apply (simp add: oex_def, blast)
done

lemma oex_cong [cong]:
    "[| a=a';  !!x. x<a' ==> P(x) <-> P'(x) |]
     ==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))"
apply (simp add: oex_def cong add: conj_cong)
done


subsubsection ‹Rules for Ordinal-Indexed Unions›

lemma OUN_I [intro]: "[| a<i;  b ∈ B(a) |] ==> b: (⋃z<i. B(z))"
by (unfold OUnion_def lt_def, blast)

lemma OUN_E [elim!]:
    "[| b ∈ (⋃z<i. B(z));  !!a.[| b ∈ B(a);  a<i |] ==> R |] ==> R"
apply (unfold OUnion_def lt_def, blast)
done

lemma OUN_iff: "b ∈ (⋃x<i. B(x)) <-> (∃x<i. b ∈ B(x))"
by (unfold OUnion_def oex_def lt_def, blast)

lemma OUN_cong [cong]:
    "[| i=j;  !!x. x<j ==> C(x)=D(x) |] ==> (⋃x<i. C(x)) = (⋃x<j. D(x))"
by (simp add: OUnion_def lt_def OUN_iff)

lemma lt_induct:
    "[| i<k;  !!x.[| x<k;  ∀y<x. P(y) |] ==> P(x) |]  ==>  P(i)"
apply (simp add: lt_def oall_def)
apply (erule conjE)
apply (erule Ord_induct, assumption, blast)
done


subsection ‹Quantification over a class›

definition
  "rall"     :: "[i=>o, i=>o] => o"  where
    "rall(M, P) == ∀x. M(x) ⟶ P(x)"

definition
  "rex"      :: "[i=>o, i=>o] => o"  where
    "rex(M, P) == ∃x. M(x) & P(x)"

syntax
  "_rall"     :: "[pttrn, i=>o, o] => o"        (‹(3∀_[_]./ _)› 10)
  "_rex"      :: "[pttrn, i=>o, o] => o"        (‹(3∃_[_]./ _)› 10)
translations
  "∀x[M]. P"  "CONST rall(M, λx. P)"
  "∃x[M]. P"  "CONST rex(M, λx. P)"


subsubsection‹Relativized universal quantifier›

lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> ∀x[M]. P(x)"
by (simp add: rall_def)

lemma rspec: "[| ∀x[M]. P(x); M(x) |] ==> P(x)"
by (simp add: rall_def)

(*Instantiates x first: better for automatic theorem proving?*)
lemma rev_rallE [elim]:
    "[| ∀x[M]. P(x);  ~ M(x) ==> Q;  P(x) ==> Q |] ==> Q"
by (simp add: rall_def, blast)

lemma rallE: "[| ∀x[M]. P(x);  P(x) ==> Q;  ~ M(x) ==> Q |] ==> Q"
by blast

(*Trival rewrite rule;   (∀x[M].P)<->P holds only if A is nonempty!*)
lemma rall_triv [simp]: "(∀x[M]. P) ⟷ ((∃x. M(x)) ⟶ P)"
by (simp add: rall_def)

(*Congruence rule for rewriting*)
lemma rall_cong [cong]:
    "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (∀x[M]. P(x)) <-> (∀x[M]. P'(x))"
by (simp add: rall_def)


subsubsection‹Relativized existential quantifier›

lemma rexI [intro]: "[| P(x); M(x) |] ==> ∃x[M]. P(x)"
by (simp add: rex_def, blast)

(*The best argument order when there is only one M(x)*)
lemma rev_rexI: "[| M(x);  P(x) |] ==> ∃x[M]. P(x)"
by blast

(*Not of the general form for such rules... *)
lemma rexCI: "[| ∀x[M]. ~P(x) ==> P(a); M(a) |] ==> ∃x[M]. P(x)"
by blast

lemma rexE [elim!]: "[| ∃x[M]. P(x);  !!x. [| M(x); P(x) |] ==> Q |] ==> Q"
by (simp add: rex_def, blast)

(*We do not even have (∃x[M]. True) <-> True unless A is nonempty!!*)
lemma rex_triv [simp]: "(∃x[M]. P) ⟷ ((∃x. M(x)) ∧ P)"
by (simp add: rex_def)

lemma rex_cong [cong]:
    "(!!x. M(x) ==> P(x) <-> P'(x)) ==> (∃x[M]. P(x)) <-> (∃x[M]. P'(x))"
by (simp add: rex_def cong: conj_cong)

lemma rall_is_ball [simp]: "(∀x[%z. z∈A]. P(x)) <-> (∀x∈A. P(x))"
by blast

lemma rex_is_bex [simp]: "(∃x[%z. z∈A]. P(x)) <-> (∃x∈A. P(x))"
by blast

lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (∀x[M]. P(x))"
by (simp add: rall_def atomize_all atomize_imp)

declare atomize_rall [symmetric, rulify]

lemma rall_simps1:
     "(∀x[M]. P(x) & Q)   <-> (∀x[M]. P(x)) & ((∀x[M]. False) | Q)"
     "(∀x[M]. P(x) | Q)   <-> ((∀x[M]. P(x)) | Q)"
     "(∀x[M]. P(x) ⟶ Q) <-> ((∃x[M]. P(x)) ⟶ Q)"
     "(~(∀x[M]. P(x))) <-> (∃x[M]. ~P(x))"
by blast+

lemma rall_simps2:
     "(∀x[M]. P & Q(x))   <-> ((∀x[M]. False) | P) & (∀x[M]. Q(x))"
     "(∀x[M]. P | Q(x))   <-> (P | (∀x[M]. Q(x)))"
     "(∀x[M]. P ⟶ Q(x)) <-> (P ⟶ (∀x[M]. Q(x)))"
by blast+

lemmas rall_simps [simp] = rall_simps1 rall_simps2

lemma rall_conj_distrib:
    "(∀x[M]. P(x) & Q(x)) <-> ((∀x[M]. P(x)) & (∀x[M]. Q(x)))"
by blast

lemma rex_simps1:
     "(∃x[M]. P(x) & Q) <-> ((∃x[M]. P(x)) & Q)"
     "(∃x[M]. P(x) | Q) <-> (∃x[M]. P(x)) | ((∃x[M]. True) & Q)"
     "(∃x[M]. P(x) ⟶ Q) <-> ((∀x[M]. P(x)) ⟶ ((∃x[M]. True) & Q))"
     "(~(∃x[M]. P(x))) <-> (∀x[M]. ~P(x))"
by blast+

lemma rex_simps2:
     "(∃x[M]. P & Q(x)) <-> (P & (∃x[M]. Q(x)))"
     "(∃x[M]. P | Q(x)) <-> ((∃x[M]. True) & P) | (∃x[M]. Q(x))"
     "(∃x[M]. P ⟶ Q(x)) <-> (((∀x[M]. False) | P) ⟶ (∃x[M]. Q(x)))"
by blast+

lemmas rex_simps [simp] = rex_simps1 rex_simps2

lemma rex_disj_distrib:
    "(∃x[M]. P(x) | Q(x)) <-> ((∃x[M]. P(x)) | (∃x[M]. Q(x)))"
by blast


subsubsection‹One-point rule for bounded quantifiers›

lemma rex_triv_one_point1 [simp]: "(∃x[M]. x=a) <-> ( M(a))"
by blast

lemma rex_triv_one_point2 [simp]: "(∃x[M]. a=x) <-> ( M(a))"
by blast

lemma rex_one_point1 [simp]: "(∃x[M]. x=a & P(x)) <-> ( M(a) & P(a))"
by blast

lemma rex_one_point2 [simp]: "(∃x[M]. a=x & P(x)) <-> ( M(a) & P(a))"
by blast

lemma rall_one_point1 [simp]: "(∀x[M]. x=a ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast

lemma rall_one_point2 [simp]: "(∀x[M]. a=x ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast


subsubsection‹Sets as Classes›

definition
  setclass :: "[i,i] => o"       (‹##_› [40] 40)  where
   "setclass(A) == %x. x ∈ A"

lemma setclass_iff [simp]: "setclass(A,x) <-> x ∈ A"
by (simp add: setclass_def)

lemma rall_setclass_is_ball [simp]: "(∀x[##A]. P(x)) <-> (∀x∈A. P(x))"
by auto

lemma rex_setclass_is_bex [simp]: "(∃x[##A]. P(x)) <-> (∃x∈A. P(x))"
by auto


ML
‹
val Ord_atomize =
  atomize ([(\<^const_name>‹oall›, @{thms ospec}), (\<^const_name>‹rall›, @{thms rspec})] @
    ZF_conn_pairs, ZF_mem_pairs);
›
declaration ‹fn _ =>
  Simplifier.map_ss (Simplifier.set_mksimps (fn ctxt =>
    map mk_eq o Ord_atomize o Variable.gen_all ctxt))
›

text ‹Setting up the one-point-rule simproc›

simproc_setup defined_rex ("∃x[M]. P(x) & Q(x)") = ‹
  fn _ => Quantifier1.rearrange_bex
    (fn ctxt =>
      unfold_tac ctxt @{thms rex_def} THEN
      Quantifier1.prove_one_point_ex_tac ctxt)
›

simproc_setup defined_rall ("∀x[M]. P(x) ⟶ Q(x)") = ‹
  fn _ => Quantifier1.rearrange_ball
    (fn ctxt =>
      unfold_tac ctxt @{thms rall_def} THEN
      Quantifier1.prove_one_point_all_tac ctxt)
›

end