section ‹Special quantifiers›
theory OrdQuant imports Ordinal begin
subsection ‹Quantifiers and union operator for ordinals›
definition
oall :: "[i, i => o] => o" where
"oall(A, P) == ∀x. x<A ⟶ P(x)"
definition
oex :: "[i, i => o] => o" where
"oex(A, P) == ∃x. x<A & P(x)"
definition
OUnion :: "[i, i => i] => i" where
"OUnion(i,B) == {z: ⋃x∈i. B(x). Ord(i)}"
syntax
"_oall" :: "[idt, i, o] => o" (‹(3∀_<_./ _)› 10)
"_oex" :: "[idt, i, o] => o" (‹(3∃_<_./ _)› 10)
"_OUNION" :: "[idt, i, i] => i" (‹(3⋃_<_./ _)› 10)
translations
"∀x<a. P" ⇌ "CONST oall(a, λx. P)"
"∃x<a. P" ⇌ "CONST oex(a, λx. P)"
"⋃x<a. B" ⇌ "CONST OUnion(a, λx. B)"
subsubsection ‹simplification of the new quantifiers›
lemma [simp]: "(∀x<0. P(x))"
by (simp add: oall_def)
lemma [simp]: "~(∃x<0. P(x))"
by (simp add: oex_def)
lemma [simp]: "(∀x<succ(i). P(x)) <-> (Ord(i) ⟶ P(i) & (∀x<i. P(x)))"
apply (simp add: oall_def le_iff)
apply (blast intro: lt_Ord2)
done
lemma [simp]: "(∃x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (∃x<i. P(x))))"
apply (simp add: oex_def le_iff)
apply (blast intro: lt_Ord2)
done
subsubsection ‹Union over ordinals›
lemma Ord_OUN [intro,simp]:
"[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(⋃x<A. B(x))"
by (simp add: OUnion_def ltI Ord_UN)
lemma OUN_upper_lt:
"[| a<A; i < b(a); Ord(⋃x<A. b(x)) |] ==> i < (⋃x<A. b(x))"
by (unfold OUnion_def lt_def, blast )
lemma OUN_upper_le:
"[| a<A; i≤b(a); Ord(⋃x<A. b(x)) |] ==> i ≤ (⋃x<A. b(x))"
apply (unfold OUnion_def, auto)
apply (rule UN_upper_le )
apply (auto simp add: lt_def)
done
lemma Limit_OUN_eq: "Limit(i) ==> (⋃x<i. x) = i"
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord)
lemma OUN_least:
"(!!x. x<A ==> B(x) ⊆ C) ==> (⋃x<A. B(x)) ⊆ C"
by (simp add: OUnion_def UN_least ltI)
lemma OUN_least_le:
"[| Ord(i); !!x. x<A ==> b(x) ≤ i |] ==> (⋃x<A. b(x)) ≤ i"
by (simp add: OUnion_def UN_least_le ltI Ord_0_le)
lemma le_implies_OUN_le_OUN:
"[| !!x. x<A ==> c(x) ≤ d(x) |] ==> (⋃x<A. c(x)) ≤ (⋃x<A. d(x))"
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN)
lemma OUN_UN_eq:
"(!!x. x ∈ A ==> Ord(B(x)))
==> (⋃z < (⋃x∈A. B(x)). C(z)) = (⋃x∈A. ⋃z < B(x). C(z))"
by (simp add: OUnion_def)
lemma OUN_Union_eq:
"(!!x. x ∈ X ==> Ord(x))
==> (⋃z < ⋃(X). C(z)) = (⋃x∈X. ⋃z < x. C(z))"
by (simp add: OUnion_def)
lemma atomize_oall [symmetric, rulify]:
"(!!x. x<A ==> P(x)) == Trueprop (∀x<A. P(x))"
by (simp add: oall_def atomize_all atomize_imp)
subsubsection ‹universal quantifier for ordinals›
lemma oallI [intro!]:
"[| !!x. x<A ==> P(x) |] ==> ∀x<A. P(x)"
by (simp add: oall_def)
lemma ospec: "[| ∀x<A. P(x); x<A |] ==> P(x)"
by (simp add: oall_def)
lemma oallE:
"[| ∀x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q"
by (simp add: oall_def, blast)
lemma rev_oallE [elim]:
"[| ∀x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q"
by (simp add: oall_def, blast)
lemma oall_simp [simp]: "(∀x<a. True) <-> True"
by blast
lemma oall_cong [cong]:
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |]
==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))"
by (simp add: oall_def)
subsubsection ‹existential quantifier for ordinals›
lemma oexI [intro]:
"[| P(x); x<A |] ==> ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done
lemma oexCI:
"[| ∀x<A. ~P(x) ==> P(a); a<A |] ==> ∃x<A. P(x)"
apply (simp add: oex_def, blast)
done
lemma oexE [elim!]:
"[| ∃x<A. P(x); !!x. [| x<A; P(x) |] ==> Q |] ==> Q"
apply (simp add: oex_def, blast)
done
lemma oex_cong [cong]:
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |]
==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))"
apply (simp add: oex_def cong add: conj_cong)
done
subsubsection ‹Rules for Ordinal-Indexed Unions›
lemma OUN_I [intro]: "[| a<i; b ∈ B(a) |] ==> b: (⋃z<i. B(z))"
by (unfold OUnion_def lt_def, blast)
lemma OUN_E [elim!]:
"[| b ∈ (⋃z<i. B(z)); !!a.[| b ∈ B(a); a<i |] ==> R |] ==> R"
apply (unfold OUnion_def lt_def, blast)
done
lemma OUN_iff: "b ∈ (⋃x<i. B(x)) <-> (∃x<i. b ∈ B(x))"
by (unfold OUnion_def oex_def lt_def, blast)
lemma OUN_cong [cong]:
"[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (⋃x<i. C(x)) = (⋃x<j. D(x))"
by (simp add: OUnion_def lt_def OUN_iff)
lemma lt_induct:
"[| i<k; !!x.[| x<k; ∀y<x. P(y) |] ==> P(x) |] ==> P(i)"
apply (simp add: lt_def oall_def)
apply (erule conjE)
apply (erule Ord_induct, assumption, blast)
done
subsection ‹Quantification over a class›
definition
"rall" :: "[i=>o, i=>o] => o" where
"rall(M, P) == ∀x. M(x) ⟶ P(x)"
definition
"rex" :: "[i=>o, i=>o] => o" where
"rex(M, P) == ∃x. M(x) & P(x)"
syntax
"_rall" :: "[pttrn, i=>o, o] => o" (‹(3∀_[_]./ _)› 10)
"_rex" :: "[pttrn, i=>o, o] => o" (‹(3∃_[_]./ _)› 10)
translations
"∀x[M]. P" ⇌ "CONST rall(M, λx. P)"
"∃x[M]. P" ⇌ "CONST rex(M, λx. P)"
subsubsection‹Relativized universal quantifier›
lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> ∀x[M]. P(x)"
by (simp add: rall_def)
lemma rspec: "[| ∀x[M]. P(x); M(x) |] ==> P(x)"
by (simp add: rall_def)
lemma rev_rallE [elim]:
"[| ∀x[M]. P(x); ~ M(x) ==> Q; P(x) ==> Q |] ==> Q"
by (simp add: rall_def, blast)
lemma rallE: "[| ∀x[M]. P(x); P(x) ==> Q; ~ M(x) ==> Q |] ==> Q"
by blast
lemma rall_triv [simp]: "(∀x[M]. P) ⟷ ((∃x. M(x)) ⟶ P)"
by (simp add: rall_def)
lemma rall_cong [cong]:
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (∀x[M]. P(x)) <-> (∀x[M]. P'(x))"
by (simp add: rall_def)
subsubsection‹Relativized existential quantifier›
lemma rexI [intro]: "[| P(x); M(x) |] ==> ∃x[M]. P(x)"
by (simp add: rex_def, blast)
lemma rev_rexI: "[| M(x); P(x) |] ==> ∃x[M]. P(x)"
by blast
lemma rexCI: "[| ∀x[M]. ~P(x) ==> P(a); M(a) |] ==> ∃x[M]. P(x)"
by blast
lemma rexE [elim!]: "[| ∃x[M]. P(x); !!x. [| M(x); P(x) |] ==> Q |] ==> Q"
by (simp add: rex_def, blast)
lemma rex_triv [simp]: "(∃x[M]. P) ⟷ ((∃x. M(x)) ∧ P)"
by (simp add: rex_def)
lemma rex_cong [cong]:
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (∃x[M]. P(x)) <-> (∃x[M]. P'(x))"
by (simp add: rex_def cong: conj_cong)
lemma rall_is_ball [simp]: "(∀x[%z. z∈A]. P(x)) <-> (∀x∈A. P(x))"
by blast
lemma rex_is_bex [simp]: "(∃x[%z. z∈A]. P(x)) <-> (∃x∈A. P(x))"
by blast
lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (∀x[M]. P(x))"
by (simp add: rall_def atomize_all atomize_imp)
declare atomize_rall [symmetric, rulify]
lemma rall_simps1:
"(∀x[M]. P(x) & Q) <-> (∀x[M]. P(x)) & ((∀x[M]. False) | Q)"
"(∀x[M]. P(x) | Q) <-> ((∀x[M]. P(x)) | Q)"
"(∀x[M]. P(x) ⟶ Q) <-> ((∃x[M]. P(x)) ⟶ Q)"
"(~(∀x[M]. P(x))) <-> (∃x[M]. ~P(x))"
by blast+
lemma rall_simps2:
"(∀x[M]. P & Q(x)) <-> ((∀x[M]. False) | P) & (∀x[M]. Q(x))"
"(∀x[M]. P | Q(x)) <-> (P | (∀x[M]. Q(x)))"
"(∀x[M]. P ⟶ Q(x)) <-> (P ⟶ (∀x[M]. Q(x)))"
by blast+
lemmas rall_simps [simp] = rall_simps1 rall_simps2
lemma rall_conj_distrib:
"(∀x[M]. P(x) & Q(x)) <-> ((∀x[M]. P(x)) & (∀x[M]. Q(x)))"
by blast
lemma rex_simps1:
"(∃x[M]. P(x) & Q) <-> ((∃x[M]. P(x)) & Q)"
"(∃x[M]. P(x) | Q) <-> (∃x[M]. P(x)) | ((∃x[M]. True) & Q)"
"(∃x[M]. P(x) ⟶ Q) <-> ((∀x[M]. P(x)) ⟶ ((∃x[M]. True) & Q))"
"(~(∃x[M]. P(x))) <-> (∀x[M]. ~P(x))"
by blast+
lemma rex_simps2:
"(∃x[M]. P & Q(x)) <-> (P & (∃x[M]. Q(x)))"
"(∃x[M]. P | Q(x)) <-> ((∃x[M]. True) & P) | (∃x[M]. Q(x))"
"(∃x[M]. P ⟶ Q(x)) <-> (((∀x[M]. False) | P) ⟶ (∃x[M]. Q(x)))"
by blast+
lemmas rex_simps [simp] = rex_simps1 rex_simps2
lemma rex_disj_distrib:
"(∃x[M]. P(x) | Q(x)) <-> ((∃x[M]. P(x)) | (∃x[M]. Q(x)))"
by blast
subsubsection‹One-point rule for bounded quantifiers›
lemma rex_triv_one_point1 [simp]: "(∃x[M]. x=a) <-> ( M(a))"
by blast
lemma rex_triv_one_point2 [simp]: "(∃x[M]. a=x) <-> ( M(a))"
by blast
lemma rex_one_point1 [simp]: "(∃x[M]. x=a & P(x)) <-> ( M(a) & P(a))"
by blast
lemma rex_one_point2 [simp]: "(∃x[M]. a=x & P(x)) <-> ( M(a) & P(a))"
by blast
lemma rall_one_point1 [simp]: "(∀x[M]. x=a ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast
lemma rall_one_point2 [simp]: "(∀x[M]. a=x ⟶ P(x)) <-> ( M(a) ⟶ P(a))"
by blast
subsubsection‹Sets as Classes›
definition
setclass :: "[i,i] => o" (‹##_› [40] 40) where
"setclass(A) == %x. x ∈ A"
lemma setclass_iff [simp]: "setclass(A,x) <-> x ∈ A"
by (simp add: setclass_def)
lemma rall_setclass_is_ball [simp]: "(∀x[##A]. P(x)) <-> (∀x∈A. P(x))"
by auto
lemma rex_setclass_is_bex [simp]: "(∃x[##A]. P(x)) <-> (∃x∈A. P(x))"
by auto
ML
‹
val Ord_atomize =
atomize ([(\<^const_name>‹oall›, @{thms ospec}), (\<^const_name>‹rall›, @{thms rspec})] @
ZF_conn_pairs, ZF_mem_pairs);
›
declaration ‹fn _ =>
Simplifier.map_ss (Simplifier.set_mksimps (fn ctxt =>
map mk_eq o Ord_atomize o Variable.gen_all ctxt))
›
text ‹Setting up the one-point-rule simproc›
simproc_setup defined_rex ("∃x[M]. P(x) & Q(x)") = ‹
fn _ => Quantifier1.rearrange_bex
(fn ctxt =>
unfold_tac ctxt @{thms rex_def} THEN
Quantifier1.prove_one_point_ex_tac ctxt)
›
simproc_setup defined_rall ("∀x[M]. P(x) ⟶ Q(x)") = ‹
fn _ => Quantifier1.rearrange_ball
(fn ctxt =>
unfold_tac ctxt @{thms rall_def} THEN
Quantifier1.prove_one_point_all_tac ctxt)
›
end