Theory pair

theory pair
imports upair
(*  Title:      ZF/pair.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
*)

section‹Ordered Pairs›

theory pair imports upair
begin

ML_file ‹simpdata.ML›

setup ‹
  map_theory_simpset
    (Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt)
      #> Simplifier.add_cong @{thm if_weak_cong})
›

ML ‹val ZF_ss = simpset_of \<^context>›

simproc_setup defined_Bex ("∃x∈A. P(x) & Q(x)") = ‹
  fn _ => Quantifier1.rearrange_bex
    (fn ctxt =>
      unfold_tac ctxt @{thms Bex_def} THEN
      Quantifier1.prove_one_point_ex_tac ctxt)
›

simproc_setup defined_Ball ("∀x∈A. P(x) ⟶ Q(x)") = ‹
  fn _ => Quantifier1.rearrange_ball
    (fn ctxt =>
      unfold_tac ctxt @{thms Ball_def} THEN
      Quantifier1.prove_one_point_all_tac ctxt)
›


(** Lemmas for showing that <a,b> uniquely determines a and b **)

lemma singleton_eq_iff [iff]: "{a} = {b} ⟷ a=b"
by (rule extension [THEN iff_trans], blast)

lemma doubleton_eq_iff: "{a,b} = {c,d} ⟷ (a=c & b=d) | (a=d & b=c)"
by (rule extension [THEN iff_trans], blast)

lemma Pair_iff [simp]: "<a,b> = <c,d> ⟷ a=c & b=d"
by (simp add: Pair_def doubleton_eq_iff, blast)

lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!]

lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1]
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2]

lemma Pair_not_0: "<a,b> ≠ 0"
apply (unfold Pair_def)
apply (blast elim: equalityE)
done

lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!]

declare sym [THEN Pair_neq_0, elim!]

lemma Pair_neq_fst: "<a,b>=a ==> P"
proof (unfold Pair_def)
  assume eq: "{{a, a}, {a, b}} = a"
  have  "{a, a} ∈ {{a, a}, {a, b}}" by (rule consI1)
  hence "{a, a} ∈ a" by (simp add: eq)
  moreover have "a ∈ {a, a}" by (rule consI1)
  ultimately show "P" by (rule mem_asym)
qed

lemma Pair_neq_snd: "<a,b>=b ==> P"
proof (unfold Pair_def)
  assume eq: "{{a, a}, {a, b}} = b"
  have  "{a, b} ∈ {{a, a}, {a, b}}" by blast
  hence "{a, b} ∈ b" by (simp add: eq)
  moreover have "b ∈ {a, b}" by blast
  ultimately show "P" by (rule mem_asym)
qed


subsection‹Sigma: Disjoint Union of a Family of Sets›

text‹Generalizes Cartesian product›

lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) ⟷ a ∈ A & b ∈ B(a)"
by (simp add: Sigma_def)

lemma SigmaI [TC,intro!]: "[| a ∈ A;  b ∈ B(a) |] ==> <a,b> ∈ Sigma(A,B)"
by simp

lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1]
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2]

(*The general elimination rule*)
lemma SigmaE [elim!]:
    "[| c ∈ Sigma(A,B);
        !!x y.[| x ∈ A;  y ∈ B(x);  c=<x,y> |] ==> P
     |] ==> P"
by (unfold Sigma_def, blast)

lemma SigmaE2 [elim!]:
    "[| <a,b> ∈ Sigma(A,B);
        [| a ∈ A;  b ∈ B(a) |] ==> P
     |] ==> P"
by (unfold Sigma_def, blast)

lemma Sigma_cong:
    "[| A=A';  !!x. x ∈ A' ==> B(x)=B'(x) |] ==>
     Sigma(A,B) = Sigma(A',B')"
by (simp add: Sigma_def)

(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
  flex-flex pairs and the "Check your prover" error.  Most
  Sigmas and Pis are abbreviated as * or -> *)

lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"
by blast

lemma Sigma_empty2 [simp]: "A*0 = 0"
by blast

lemma Sigma_empty_iff: "A*B=0 ⟷ A=0 | B=0"
by blast


subsection‹Projections \<^term>‹fst› and \<^term>‹snd››

lemma fst_conv [simp]: "fst(<a,b>) = a"
by (simp add: fst_def)

lemma snd_conv [simp]: "snd(<a,b>) = b"
by (simp add: snd_def)

lemma fst_type [TC]: "p ∈ Sigma(A,B) ==> fst(p) ∈ A"
by auto

lemma snd_type [TC]: "p ∈ Sigma(A,B) ==> snd(p) ∈ B(fst(p))"
by auto

lemma Pair_fst_snd_eq: "a ∈ Sigma(A,B) ==> <fst(a),snd(a)> = a"
by auto


subsection‹The Eliminator, \<^term>‹split››

(*A META-equality, so that it applies to higher types as well...*)
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"
by (simp add: split_def)

lemma split_type [TC]:
    "[|  p ∈ Sigma(A,B);
         !!x y.[| x ∈ A; y ∈ B(x) |] ==> c(x,y):C(<x,y>)
     |] ==> split(%x y. c(x,y), p) ∈ C(p)"
by (erule SigmaE, auto)

lemma expand_split:
  "u ∈ A*B ==>
        R(split(c,u)) ⟷ (∀x∈A. ∀y∈B. u = <x,y> ⟶ R(c(x,y)))"
by (auto simp add: split_def)


subsection‹A version of \<^term>‹split› for Formulae: Result Type \<^typ>‹o››

lemma splitI: "R(a,b) ==> split(R, <a,b>)"
by (simp add: split_def)

lemma splitE:
    "[| split(R,z);  z ∈ Sigma(A,B);
        !!x y. [| z = <x,y>;  R(x,y) |] ==> P
     |] ==> P"
by (auto simp add: split_def)

lemma splitD: "split(R,<a,b>) ==> R(a,b)"
by (simp add: split_def)

text ‹
  \bigskip Complex rules for Sigma.
›

lemma split_paired_Bex_Sigma [simp]:
     "(∃z ∈ Sigma(A,B). P(z)) ⟷ (∃x ∈ A. ∃y ∈ B(x). P(<x,y>))"
by blast

lemma split_paired_Ball_Sigma [simp]:
     "(∀z ∈ Sigma(A,B). P(z)) ⟷ (∀x ∈ A. ∀y ∈ B(x). P(<x,y>))"
by blast

end