section‹Ordered Pairs›
theory pair imports upair
begin
ML_file ‹simpdata.ML›
setup ‹
map_theory_simpset
(Simplifier.set_mksimps (fn ctxt => map mk_eq o ZF_atomize o Variable.gen_all ctxt)
#> Simplifier.add_cong @{thm if_weak_cong})
›
ML ‹val ZF_ss = simpset_of \<^context>›
simproc_setup defined_Bex ("∃x∈A. P(x) & Q(x)") = ‹
fn _ => Quantifier1.rearrange_bex
(fn ctxt =>
unfold_tac ctxt @{thms Bex_def} THEN
Quantifier1.prove_one_point_ex_tac ctxt)
›
simproc_setup defined_Ball ("∀x∈A. P(x) ⟶ Q(x)") = ‹
fn _ => Quantifier1.rearrange_ball
(fn ctxt =>
unfold_tac ctxt @{thms Ball_def} THEN
Quantifier1.prove_one_point_all_tac ctxt)
›
lemma singleton_eq_iff [iff]: "{a} = {b} ⟷ a=b"
by (rule extension [THEN iff_trans], blast)
lemma doubleton_eq_iff: "{a,b} = {c,d} ⟷ (a=c & b=d) | (a=d & b=c)"
by (rule extension [THEN iff_trans], blast)
lemma Pair_iff [simp]: "<a,b> = <c,d> ⟷ a=c & b=d"
by (simp add: Pair_def doubleton_eq_iff, blast)
lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!]
lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1]
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2]
lemma Pair_not_0: "<a,b> ≠ 0"
apply (unfold Pair_def)
apply (blast elim: equalityE)
done
lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!]
declare sym [THEN Pair_neq_0, elim!]
lemma Pair_neq_fst: "<a,b>=a ==> P"
proof (unfold Pair_def)
assume eq: "{{a, a}, {a, b}} = a"
have "{a, a} ∈ {{a, a}, {a, b}}" by (rule consI1)
hence "{a, a} ∈ a" by (simp add: eq)
moreover have "a ∈ {a, a}" by (rule consI1)
ultimately show "P" by (rule mem_asym)
qed
lemma Pair_neq_snd: "<a,b>=b ==> P"
proof (unfold Pair_def)
assume eq: "{{a, a}, {a, b}} = b"
have "{a, b} ∈ {{a, a}, {a, b}}" by blast
hence "{a, b} ∈ b" by (simp add: eq)
moreover have "b ∈ {a, b}" by blast
ultimately show "P" by (rule mem_asym)
qed
subsection‹Sigma: Disjoint Union of a Family of Sets›
text‹Generalizes Cartesian product›
lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) ⟷ a ∈ A & b ∈ B(a)"
by (simp add: Sigma_def)
lemma SigmaI [TC,intro!]: "[| a ∈ A; b ∈ B(a) |] ==> <a,b> ∈ Sigma(A,B)"
by simp
lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1]
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2]
lemma SigmaE [elim!]:
"[| c ∈ Sigma(A,B);
!!x y.[| x ∈ A; y ∈ B(x); c=<x,y> |] ==> P
|] ==> P"
by (unfold Sigma_def, blast)
lemma SigmaE2 [elim!]:
"[| <a,b> ∈ Sigma(A,B);
[| a ∈ A; b ∈ B(a) |] ==> P
|] ==> P"
by (unfold Sigma_def, blast)
lemma Sigma_cong:
"[| A=A'; !!x. x ∈ A' ==> B(x)=B'(x) |] ==>
Sigma(A,B) = Sigma(A',B')"
by (simp add: Sigma_def)
lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"
by blast
lemma Sigma_empty2 [simp]: "A*0 = 0"
by blast
lemma Sigma_empty_iff: "A*B=0 ⟷ A=0 | B=0"
by blast
subsection‹Projections \<^term>‹fst› and \<^term>‹snd››
lemma fst_conv [simp]: "fst(<a,b>) = a"
by (simp add: fst_def)
lemma snd_conv [simp]: "snd(<a,b>) = b"
by (simp add: snd_def)
lemma fst_type [TC]: "p ∈ Sigma(A,B) ==> fst(p) ∈ A"
by auto
lemma snd_type [TC]: "p ∈ Sigma(A,B) ==> snd(p) ∈ B(fst(p))"
by auto
lemma Pair_fst_snd_eq: "a ∈ Sigma(A,B) ==> <fst(a),snd(a)> = a"
by auto
subsection‹The Eliminator, \<^term>‹split››
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"
by (simp add: split_def)
lemma split_type [TC]:
"[| p ∈ Sigma(A,B);
!!x y.[| x ∈ A; y ∈ B(x) |] ==> c(x,y):C(<x,y>)
|] ==> split(%x y. c(x,y), p) ∈ C(p)"
by (erule SigmaE, auto)
lemma expand_split:
"u ∈ A*B ==>
R(split(c,u)) ⟷ (∀x∈A. ∀y∈B. u = <x,y> ⟶ R(c(x,y)))"
by (auto simp add: split_def)
subsection‹A version of \<^term>‹split› for Formulae: Result Type \<^typ>‹o››
lemma splitI: "R(a,b) ==> split(R, <a,b>)"
by (simp add: split_def)
lemma splitE:
"[| split(R,z); z ∈ Sigma(A,B);
!!x y. [| z = <x,y>; R(x,y) |] ==> P
|] ==> P"
by (auto simp add: split_def)
lemma splitD: "split(R,<a,b>) ==> R(a,b)"
by (simp add: split_def)
text ‹
\bigskip Complex rules for Sigma.
›
lemma split_paired_Bex_Sigma [simp]:
"(∃z ∈ Sigma(A,B). P(z)) ⟷ (∃x ∈ A. ∃y ∈ B(x). P(<x,y>))"
by blast
lemma split_paired_Ball_Sigma [simp]:
"(∀z ∈ Sigma(A,B). P(z)) ⟷ (∀x ∈ A. ∀y ∈ B(x). P(<x,y>))"
by blast
end