section ‹Base of Zermelo-Fraenkel Set Theory›
theory ZF_Base
imports FOL
begin
subsection ‹Signature›
declare [[eta_contract = false]]
typedecl i
instance i :: "term" ..
axiomatization mem :: "[i, i] ⇒ o" (infixl ‹∈› 50)
and zero :: "i" (‹0›)
and Pow :: "i ⇒ i"
and Inf :: "i"
and Union :: "i ⇒ i" (‹⋃_› [90] 90)
and PrimReplace :: "[i, [i, i] ⇒ o] ⇒ i"
abbreviation not_mem :: "[i, i] ⇒ o" (infixl ‹∉› 50)
where "x ∉ y ≡ ¬ (x ∈ y)"
subsection ‹Bounded Quantifiers›
definition Ball :: "[i, i ⇒ o] ⇒ o"
where "Ball(A, P) ≡ ∀x. x∈A ⟶ P(x)"
definition Bex :: "[i, i ⇒ o] ⇒ o"
where "Bex(A, P) ≡ ∃x. x∈A ∧ P(x)"
syntax
"_Ball" :: "[pttrn, i, o] ⇒ o" (‹(3∀_∈_./ _)› 10)
"_Bex" :: "[pttrn, i, o] ⇒ o" (‹(3∃_∈_./ _)› 10)
translations
"∀x∈A. P" ⇌ "CONST Ball(A, λx. P)"
"∃x∈A. P" ⇌ "CONST Bex(A, λx. P)"
subsection ‹Variations on Replacement›
definition Replace :: "[i, [i, i] ⇒ o] ⇒ i"
where "Replace(A,P) == PrimReplace(A, %x y. (∃!z. P(x,z)) & P(x,y))"
syntax
"_Replace" :: "[pttrn, pttrn, i, o] => i" (‹(1{_ ./ _ ∈ _, _})›)
translations
"{y. x∈A, Q}" ⇌ "CONST Replace(A, λx y. Q)"
definition RepFun :: "[i, i ⇒ i] ⇒ i"
where "RepFun(A,f) == {y . x∈A, y=f(x)}"
syntax
"_RepFun" :: "[i, pttrn, i] => i" (‹(1{_ ./ _ ∈ _})› [51,0,51])
translations
"{b. x∈A}" ⇌ "CONST RepFun(A, λx. b)"
definition Collect :: "[i, i ⇒ o] ⇒ i"
where "Collect(A,P) == {y . x∈A, x=y & P(x)}"
syntax
"_Collect" :: "[pttrn, i, o] ⇒ i" (‹(1{_ ∈ _ ./ _})›)
translations
"{x∈A. P}" ⇌ "CONST Collect(A, λx. P)"
subsection ‹General union and intersection›
definition Inter :: "i => i" (‹⋂_› [90] 90)
where "⋂(A) == { x∈⋃(A) . ∀y∈A. x∈y}"
syntax
"_UNION" :: "[pttrn, i, i] => i" (‹(3⋃_∈_./ _)› 10)
"_INTER" :: "[pttrn, i, i] => i" (‹(3⋂_∈_./ _)› 10)
translations
"⋃x∈A. B" == "CONST Union({B. x∈A})"
"⋂x∈A. B" == "CONST Inter({B. x∈A})"
subsection ‹Finite sets and binary operations›
definition Upair :: "[i, i] => i"
where "Upair(a,b) == {y. x∈Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
definition Subset :: "[i, i] ⇒ o" (infixl ‹⊆› 50)
where subset_def: "A ⊆ B ≡ ∀x∈A. x∈B"
definition Diff :: "[i, i] ⇒ i" (infixl ‹-› 65)
where "A - B == { x∈A . ~(x∈B) }"
definition Un :: "[i, i] ⇒ i" (infixl ‹∪› 65)
where "A ∪ B == ⋃(Upair(A,B))"
definition Int :: "[i, i] ⇒ i" (infixl ‹∩› 70)
where "A ∩ B == ⋂(Upair(A,B))"
definition cons :: "[i, i] => i"
where "cons(a,A) == Upair(a,a) ∪ A"
definition succ :: "i => i"
where "succ(i) == cons(i, i)"
nonterminal "is"
syntax
"" :: "i ⇒ is" (‹_›)
"_Enum" :: "[i, is] ⇒ is" (‹_,/ _›)
"_Finset" :: "is ⇒ i" (‹{(_)}›)
translations
"{x, xs}" == "CONST cons(x, {xs})"
"{x}" == "CONST cons(x, 0)"
subsection ‹Axioms›
axiomatization
where
extension: "A = B ⟷ A ⊆ B ∧ B ⊆ A" and
Union_iff: "A ∈ ⋃(C) ⟷ (∃B∈C. A∈B)" and
Pow_iff: "A ∈ Pow(B) ⟷ A ⊆ B" and
infinity: "0 ∈ Inf ∧ (∀y∈Inf. succ(y) ∈ Inf)" and
foundation: "A = 0 ∨ (∃x∈A. ∀y∈x. y∉A)" and
replacement: "(∀x∈A. ∀y z. P(x,y) ∧ P(x,z) ⟶ y = z) ⟹
b ∈ PrimReplace(A,P) ⟷ (∃x∈A. P(x,b))"
subsection ‹Definite descriptions -- via Replace over the set "1"›
definition The :: "(i ⇒ o) ⇒ i" (binder ‹THE › 10)
where the_def: "The(P) == ⋃({y . x ∈ {0}, P(y)})"
definition If :: "[o, i, i] ⇒ i" (‹(if (_)/ then (_)/ else (_))› [10] 10)
where if_def: "if P then a else b == THE z. P & z=a | ~P & z=b"
abbreviation (input)
old_if :: "[o, i, i] => i" (‹if '(_,_,_')›)
where "if(P,a,b) == If(P,a,b)"
subsection ‹Ordered Pairing›
definition Pair :: "[i, i] => i"
where "Pair(a,b) == {{a,a}, {a,b}}"
definition fst :: "i ⇒ i"
where "fst(p) == THE a. ∃b. p = Pair(a, b)"
definition snd :: "i ⇒ i"
where "snd(p) == THE b. ∃a. p = Pair(a, b)"
definition split :: "[[i, i] ⇒ 'a, i] ⇒ 'a::{}"
where "split(c) == λp. c(fst(p), snd(p))"
nonterminal patterns
syntax
"_pattern" :: "patterns => pttrn" (‹⟨_⟩›)
"" :: "pttrn => patterns" (‹_›)
"_patterns" :: "[pttrn, patterns] => patterns" (‹_,/_›)
"_Tuple" :: "[i, is] => i" (‹⟨(_,/ _)⟩›)
translations
"⟨x, y, z⟩" == "⟨x, ⟨y, z⟩⟩"
"⟨x, y⟩" == "CONST Pair(x, y)"
"λ⟨x,y,zs⟩.b" == "CONST split(λx ⟨y,zs⟩.b)"
"λ⟨x,y⟩.b" == "CONST split(λx y. b)"
definition Sigma :: "[i, i ⇒ i] ⇒ i"
where "Sigma(A,B) == ⋃x∈A. ⋃y∈B(x). {⟨x,y⟩}"
abbreviation cart_prod :: "[i, i] => i" (infixr ‹×› 80)
where "A × B ≡ Sigma(A, λ_. B)"
subsection ‹Relations and Functions›
definition converse :: "i ⇒ i"
where "converse(r) == {z. w∈r, ∃x y. w=⟨x,y⟩ ∧ z=⟨y,x⟩}"
definition domain :: "i ⇒ i"
where "domain(r) == {x. w∈r, ∃y. w=⟨x,y⟩}"
definition range :: "i ⇒ i"
where "range(r) == domain(converse(r))"
definition field :: "i ⇒ i"
where "field(r) == domain(r) ∪ range(r)"
definition relation :: "i ⇒ o"
where "relation(r) == ∀z∈r. ∃x y. z = ⟨x,y⟩"
definition "function" :: "i ⇒ o"
where "function(r) == ∀x y. ⟨x,y⟩ ∈ r ⟶ (∀y'. ⟨x,y'⟩ ∈ r ⟶ y = y')"
definition Image :: "[i, i] ⇒ i" (infixl ‹``› 90)
where image_def: "r `` A == {y ∈ range(r). ∃x∈A. ⟨x,y⟩ ∈ r}"
definition vimage :: "[i, i] ⇒ i" (infixl ‹-``› 90)
where vimage_def: "r -`` A == converse(r)``A"
definition restrict :: "[i, i] ⇒ i"
where "restrict(r,A) == {z ∈ r. ∃x∈A. ∃y. z = ⟨x,y⟩}"
definition Lambda :: "[i, i ⇒ i] ⇒ i"
where lam_def: "Lambda(A,b) == {⟨x,b(x)⟩. x∈A}"
definition "apply" :: "[i, i] ⇒ i" (infixl ‹`› 90)
where "f`a == ⋃(f``{a})"
definition Pi :: "[i, i ⇒ i] ⇒ i"
where "Pi(A,B) == {f∈Pow(Sigma(A,B)). A⊆domain(f) & function(f)}"
abbreviation function_space :: "[i, i] ⇒ i" (infixr ‹->› 60)
where "A -> B ≡ Pi(A, λ_. B)"
syntax
"_PROD" :: "[pttrn, i, i] => i" (‹(3∏_∈_./ _)› 10)
"_SUM" :: "[pttrn, i, i] => i" (‹(3∑_∈_./ _)› 10)
"_lam" :: "[pttrn, i, i] => i" (‹(3λ_∈_./ _)› 10)
translations
"∏x∈A. B" == "CONST Pi(A, λx. B)"
"∑x∈A. B" == "CONST Sigma(A, λx. B)"
"λx∈A. f" == "CONST Lambda(A, λx. f)"
subsection ‹ASCII syntax›
notation (ASCII)
cart_prod (infixr ‹*› 80) and
Int (infixl ‹Int› 70) and
Un (infixl ‹Un› 65) and
function_space (infixr ‹→› 60) and
Subset (infixl ‹<=› 50) and
mem (infixl ‹:› 50) and
not_mem (infixl ‹~:› 50)
syntax (ASCII)
"_Ball" :: "[pttrn, i, o] => o" (‹(3ALL _:_./ _)› 10)
"_Bex" :: "[pttrn, i, o] => o" (‹(3EX _:_./ _)› 10)
"_Collect" :: "[pttrn, i, o] => i" (‹(1{_: _ ./ _})›)
"_Replace" :: "[pttrn, pttrn, i, o] => i" (‹(1{_ ./ _: _, _})›)
"_RepFun" :: "[i, pttrn, i] => i" (‹(1{_ ./ _: _})› [51,0,51])
"_UNION" :: "[pttrn, i, i] => i" (‹(3UN _:_./ _)› 10)
"_INTER" :: "[pttrn, i, i] => i" (‹(3INT _:_./ _)› 10)
"_PROD" :: "[pttrn, i, i] => i" (‹(3PROD _:_./ _)› 10)
"_SUM" :: "[pttrn, i, i] => i" (‹(3SUM _:_./ _)› 10)
"_lam" :: "[pttrn, i, i] => i" (‹(3lam _:_./ _)› 10)
"_Tuple" :: "[i, is] => i" (‹<(_,/ _)>›)
"_pattern" :: "patterns => pttrn" (‹<_>›)
subsection ‹Substitution›
lemma subst_elem: "[| b∈A; a=b |] ==> a∈A"
by (erule ssubst, assumption)
subsection‹Bounded universal quantifier›
lemma ballI [intro!]: "[| !!x. x∈A ==> P(x) |] ==> ∀x∈A. P(x)"
by (simp add: Ball_def)
lemmas strip = impI allI ballI
lemma bspec [dest?]: "[| ∀x∈A. P(x); x: A |] ==> P(x)"
by (simp add: Ball_def)
lemma rev_ballE [elim]:
"[| ∀x∈A. P(x); x∉A ==> Q; P(x) ==> Q |] ==> Q"
by (simp add: Ball_def, blast)
lemma ballE: "[| ∀x∈A. P(x); P(x) ==> Q; x∉A ==> Q |] ==> Q"
by blast
lemma rev_bspec: "[| x: A; ∀x∈A. P(x) |] ==> P(x)"
by (simp add: Ball_def)
lemma ball_triv [simp]: "(∀x∈A. P) <-> ((∃x. x∈A) ⟶ P)"
by (simp add: Ball_def)
lemma ball_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |] ==> (∀x∈A. P(x)) <-> (∀x∈A'. P'(x))"
by (simp add: Ball_def)
lemma atomize_ball:
"(!!x. x ∈ A ==> P(x)) == Trueprop (∀x∈A. P(x))"
by (simp only: Ball_def atomize_all atomize_imp)
lemmas [symmetric, rulify] = atomize_ball
and [symmetric, defn] = atomize_ball
subsection‹Bounded existential quantifier›
lemma bexI [intro]: "[| P(x); x: A |] ==> ∃x∈A. P(x)"
by (simp add: Bex_def, blast)
lemma rev_bexI: "[| x∈A; P(x) |] ==> ∃x∈A. P(x)"
by blast
lemma bexCI: "[| ∀x∈A. ~P(x) ==> P(a); a: A |] ==> ∃x∈A. P(x)"
by blast
lemma bexE [elim!]: "[| ∃x∈A. P(x); !!x. [| x∈A; P(x) |] ==> Q |] ==> Q"
by (simp add: Bex_def, blast)
lemma bex_triv [simp]: "(∃x∈A. P) <-> ((∃x. x∈A) & P)"
by (simp add: Bex_def)
lemma bex_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |]
==> (∃x∈A. P(x)) <-> (∃x∈A'. P'(x))"
by (simp add: Bex_def cong: conj_cong)
subsection‹Rules for subsets›
lemma subsetI [intro!]:
"(!!x. x∈A ==> x∈B) ==> A ⊆ B"
by (simp add: subset_def)
lemma subsetD [elim]: "[| A ⊆ B; c∈A |] ==> c∈B"
apply (unfold subset_def)
apply (erule bspec, assumption)
done
lemma subsetCE [elim]:
"[| A ⊆ B; c∉A ==> P; c∈B ==> P |] ==> P"
by (simp add: subset_def, blast)
lemma rev_subsetD: "[| c∈A; A<=B |] ==> c∈B"
by blast
lemma contra_subsetD: "[| A ⊆ B; c ∉ B |] ==> c ∉ A"
by blast
lemma rev_contra_subsetD: "[| c ∉ B; A ⊆ B |] ==> c ∉ A"
by blast
lemma subset_refl [simp]: "A ⊆ A"
by blast
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"
by blast
lemma subset_iff:
"A<=B <-> (∀x. x∈A ⟶ x∈B)"
apply (unfold subset_def Ball_def)
apply (rule iff_refl)
done
text‹For calculations›
declare subsetD [trans] rev_subsetD [trans] subset_trans [trans]
subsection‹Rules for equality›
lemma equalityI [intro]: "[| A ⊆ B; B ⊆ A |] ==> A = B"
by (rule extension [THEN iffD2], rule conjI)
lemma equality_iffI: "(!!x. x∈A <-> x∈B) ==> A = B"
by (rule equalityI, blast+)
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
by (blast dest: equalityD1 equalityD2)
lemma equalityCE:
"[| A = B; [| c∈A; c∈B |] ==> P; [| c∉A; c∉B |] ==> P |] ==> P"
by (erule equalityE, blast)
lemma equality_iffD:
"A = B ==> (!!x. x ∈ A <-> x ∈ B)"
by auto
subsection‹Rules for Replace -- the derived form of replacement›
lemma Replace_iff:
"b ∈ {y. x∈A, P(x,y)} <-> (∃x∈A. P(x,b) & (∀y. P(x,y) ⟶ y=b))"
apply (unfold Replace_def)
apply (rule replacement [THEN iff_trans], blast+)
done
lemma ReplaceI [intro]:
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==>
b ∈ {y. x∈A, P(x,y)}"
by (rule Replace_iff [THEN iffD2], blast)
lemma ReplaceE:
"[| b ∈ {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b); ∀y. P(x,y)⟶y=b |] ==> R
|] ==> R"
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)
lemma ReplaceE2 [elim!]:
"[| b ∈ {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b) |] ==> R
|] ==> R"
by (erule ReplaceE, blast)
lemma Replace_cong [cong]:
"[| A=B; !!x y. x∈B ==> P(x,y) <-> Q(x,y) |] ==>
Replace(A,P) = Replace(B,Q)"
apply (rule equality_iffI)
apply (simp add: Replace_iff)
done
subsection‹Rules for RepFun›
lemma RepFunI: "a ∈ A ==> f(a) ∈ {f(x). x∈A}"
by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_eqI [intro]: "[| b=f(a); a ∈ A |] ==> b ∈ {f(x). x∈A}"
apply (erule ssubst)
apply (erule RepFunI)
done
lemma RepFunE [elim!]:
"[| b ∈ {f(x). x∈A};
!!x.[| x∈A; b=f(x) |] ==> P |] ==>
P"
by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_cong [cong]:
"[| A=B; !!x. x∈B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
by (simp add: RepFun_def)
lemma RepFun_iff [simp]: "b ∈ {f(x). x∈A} <-> (∃x∈A. b=f(x))"
by (unfold Bex_def, blast)
lemma triv_RepFun [simp]: "{x. x∈A} = A"
by blast
subsection‹Rules for Collect -- forming a subset by separation›
lemma separation [simp]: "a ∈ {x∈A. P(x)} <-> a∈A & P(a)"
by (unfold Collect_def, blast)
lemma CollectI [intro!]: "[| a∈A; P(a) |] ==> a ∈ {x∈A. P(x)}"
by simp
lemma CollectE [elim!]: "[| a ∈ {x∈A. P(x)}; [| a∈A; P(a) |] ==> R |] ==> R"
by simp
lemma CollectD1: "a ∈ {x∈A. P(x)} ==> a∈A"
by (erule CollectE, assumption)
lemma CollectD2: "a ∈ {x∈A. P(x)} ==> P(a)"
by (erule CollectE, assumption)
lemma Collect_cong [cong]:
"[| A=B; !!x. x∈B ==> P(x) <-> Q(x) |]
==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"
by (simp add: Collect_def)
subsection‹Rules for Unions›
declare Union_iff [simp]
lemma UnionI [intro]: "[| B: C; A: B |] ==> A: ⋃(C)"
by (simp, blast)
lemma UnionE [elim!]: "[| A ∈ ⋃(C); !!B.[| A: B; B: C |] ==> R |] ==> R"
by (simp, blast)
subsection‹Rules for Unions of families›
lemma UN_iff [simp]: "b ∈ (⋃x∈A. B(x)) <-> (∃x∈A. b ∈ B(x))"
by (simp add: Bex_def, blast)
lemma UN_I: "[| a: A; b: B(a) |] ==> b: (⋃x∈A. B(x))"
by (simp, blast)
lemma UN_E [elim!]:
"[| b ∈ (⋃x∈A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"
by blast
lemma UN_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (⋃x∈A. C(x)) = (⋃x∈B. D(x))"
by simp
subsection‹Rules for the empty set›
lemma not_mem_empty [simp]: "a ∉ 0"
apply (cut_tac foundation)
apply (best dest: equalityD2)
done
lemmas emptyE [elim!] = not_mem_empty [THEN notE]
lemma empty_subsetI [simp]: "0 ⊆ A"
by blast
lemma equals0I: "[| !!y. y∈A ==> False |] ==> A=0"
by blast
lemma equals0D [dest]: "A=0 ==> a ∉ A"
by blast
declare sym [THEN equals0D, dest]
lemma not_emptyI: "a∈A ==> A ≠ 0"
by blast
lemma not_emptyE: "[| A ≠ 0; !!x. x∈A ==> R |] ==> R"
by blast
subsection‹Rules for Inter›
lemma Inter_iff: "A ∈ ⋂(C) <-> (∀x∈C. A: x) & C≠0"
by (simp add: Inter_def Ball_def, blast)
lemma InterI [intro!]:
"[| !!x. x: C ==> A: x; C≠0 |] ==> A ∈ ⋂(C)"
by (simp add: Inter_iff)
lemma InterD [elim, Pure.elim]: "[| A ∈ ⋂(C); B ∈ C |] ==> A ∈ B"
by (unfold Inter_def, blast)
lemma InterE [elim]:
"[| A ∈ ⋂(C); B∉C ==> R; A∈B ==> R |] ==> R"
by (simp add: Inter_def, blast)
subsection‹Rules for Intersections of families›
lemma INT_iff: "b ∈ (⋂x∈A. B(x)) <-> (∀x∈A. b ∈ B(x)) & A≠0"
by (force simp add: Inter_def)
lemma INT_I: "[| !!x. x: A ==> b: B(x); A≠0 |] ==> b: (⋂x∈A. B(x))"
by blast
lemma INT_E: "[| b ∈ (⋂x∈A. B(x)); a: A |] ==> b ∈ B(a)"
by blast
lemma INT_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (⋂x∈A. C(x)) = (⋂x∈B. D(x))"
by simp
subsection‹Rules for Powersets›
lemma PowI: "A ⊆ B ==> A ∈ Pow(B)"
by (erule Pow_iff [THEN iffD2])
lemma PowD: "A ∈ Pow(B) ==> A<=B"
by (erule Pow_iff [THEN iffD1])
declare Pow_iff [iff]
lemmas Pow_bottom = empty_subsetI [THEN PowI]
lemmas Pow_top = subset_refl [THEN PowI]
subsection‹Cantor's Theorem: There is no surjection from a set to its powerset.›
lemma cantor: "∃S ∈ Pow(A). ∀x∈A. b(x) ≠ S"
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)
end