section‹Injections, Surjections, Bijections, Composition›
theory Perm imports func begin
definition
comp :: "[i,i]=>i" (infixr ‹O› 60) where
"r O s == {xz ∈ domain(s)*range(r) .
∃x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
definition
id :: "i=>i" where
"id(A) == (λx∈A. x)"
definition
inj :: "[i,i]=>i" where
"inj(A,B) == { f ∈ A->B. ∀w∈A. ∀x∈A. f`w=f`x ⟶ w=x}"
definition
surj :: "[i,i]=>i" where
"surj(A,B) == { f ∈ A->B . ∀y∈B. ∃x∈A. f`x=y}"
definition
bij :: "[i,i]=>i" where
"bij(A,B) == inj(A,B) ∩ surj(A,B)"
subsection‹Surjective Function Space›
lemma surj_is_fun: "f ∈ surj(A,B) ==> f ∈ A->B"
apply (unfold surj_def)
apply (erule CollectD1)
done
lemma fun_is_surj: "f ∈ Pi(A,B) ==> f ∈ surj(A,range(f))"
apply (unfold surj_def)
apply (blast intro: apply_equality range_of_fun domain_type)
done
lemma surj_range: "f ∈ surj(A,B) ==> range(f)=B"
apply (unfold surj_def)
apply (best intro: apply_Pair elim: range_type)
done
text‹A function with a right inverse is a surjection›
lemma f_imp_surjective:
"[| f ∈ A->B; !!y. y ∈ B ==> d(y): A; !!y. y ∈ B ==> f`d(y) = y |]
==> f ∈ surj(A,B)"
by (simp add: surj_def, blast)
lemma lam_surjective:
"[| !!x. x ∈ A ==> c(x): B;
!!y. y ∈ B ==> d(y): A;
!!y. y ∈ B ==> c(d(y)) = y
|] ==> (λx∈A. c(x)) ∈ surj(A,B)"
apply (rule_tac d = d in f_imp_surjective)
apply (simp_all add: lam_type)
done
text‹Cantor's theorem revisited›
lemma cantor_surj: "f ∉ surj(A,Pow(A))"
apply (unfold surj_def, safe)
apply (cut_tac cantor)
apply (best del: subsetI)
done
subsection‹Injective Function Space›
lemma inj_is_fun: "f ∈ inj(A,B) ==> f ∈ A->B"
apply (unfold inj_def)
apply (erule CollectD1)
done
text‹Good for dealing with sets of pairs, but a bit ugly in use [used in AC]›
lemma inj_equality:
"[| <a,b>:f; <c,b>:f; f ∈ inj(A,B) |] ==> a=c"
apply (unfold inj_def)
apply (blast dest: Pair_mem_PiD)
done
lemma inj_apply_equality: "[| f ∈ inj(A,B); f`a=f`b; a ∈ A; b ∈ A |] ==> a=b"
by (unfold inj_def, blast)
text‹A function with a left inverse is an injection›
lemma f_imp_injective: "[| f ∈ A->B; ∀x∈A. d(f`x)=x |] ==> f ∈ inj(A,B)"
apply (simp (no_asm_simp) add: inj_def)
apply (blast intro: subst_context [THEN box_equals])
done
lemma lam_injective:
"[| !!x. x ∈ A ==> c(x): B;
!!x. x ∈ A ==> d(c(x)) = x |]
==> (λx∈A. c(x)) ∈ inj(A,B)"
apply (rule_tac d = d in f_imp_injective)
apply (simp_all add: lam_type)
done
subsection‹Bijections›
lemma bij_is_inj: "f ∈ bij(A,B) ==> f ∈ inj(A,B)"
apply (unfold bij_def)
apply (erule IntD1)
done
lemma bij_is_surj: "f ∈ bij(A,B) ==> f ∈ surj(A,B)"
apply (unfold bij_def)
apply (erule IntD2)
done
lemma bij_is_fun: "f ∈ bij(A,B) ==> f ∈ A->B"
by (rule bij_is_inj [THEN inj_is_fun])
lemma lam_bijective:
"[| !!x. x ∈ A ==> c(x): B;
!!y. y ∈ B ==> d(y): A;
!!x. x ∈ A ==> d(c(x)) = x;
!!y. y ∈ B ==> c(d(y)) = y
|] ==> (λx∈A. c(x)) ∈ bij(A,B)"
apply (unfold bij_def)
apply (blast intro!: lam_injective lam_surjective)
done
lemma RepFun_bijective: "(∀y∈x. ∃!y'. f(y') = f(y))
==> (λz∈{f(y). y ∈ x}. THE y. f(y) = z) ∈ bij({f(y). y ∈ x}, x)"
apply (rule_tac d = f in lam_bijective)
apply (auto simp add: the_equality2)
done
subsection‹Identity Function›
lemma idI [intro!]: "a ∈ A ==> <a,a> ∈ id(A)"
apply (unfold id_def)
apply (erule lamI)
done
lemma idE [elim!]: "[| p ∈ id(A); !!x.[| x ∈ A; p=<x,x> |] ==> P |] ==> P"
by (simp add: id_def lam_def, blast)
lemma id_type: "id(A) ∈ A->A"
apply (unfold id_def)
apply (rule lam_type, assumption)
done
lemma id_conv [simp]: "x ∈ A ==> id(A)`x = x"
apply (unfold id_def)
apply (simp (no_asm_simp))
done
lemma id_mono: "A<=B ==> id(A) ⊆ id(B)"
apply (unfold id_def)
apply (erule lam_mono)
done
lemma id_subset_inj: "A<=B ==> id(A): inj(A,B)"
apply (simp add: inj_def id_def)
apply (blast intro: lam_type)
done
lemmas id_inj = subset_refl [THEN id_subset_inj]
lemma id_surj: "id(A): surj(A,A)"
apply (unfold id_def surj_def)
apply (simp (no_asm_simp))
done
lemma id_bij: "id(A): bij(A,A)"
apply (unfold bij_def)
apply (blast intro: id_inj id_surj)
done
lemma subset_iff_id: "A ⊆ B ⟷ id(A) ∈ A->B"
apply (unfold id_def)
apply (force intro!: lam_type dest: apply_type)
done
text‹\<^term>‹id› as the identity relation›
lemma id_iff [simp]: "<x,y> ∈ id(A) ⟷ x=y & y ∈ A"
by auto
subsection‹Converse of a Function›
lemma inj_converse_fun: "f ∈ inj(A,B) ==> converse(f) ∈ range(f)->A"
apply (unfold inj_def)
apply (simp (no_asm_simp) add: Pi_iff function_def)
apply (erule CollectE)
apply (simp (no_asm_simp) add: apply_iff)
apply (blast dest: fun_is_rel)
done
text‹Equations for converse(f)›
text‹The premises are equivalent to saying that f is injective...›
lemma left_inverse_lemma:
"[| f ∈ A->B; converse(f): C->A; a ∈ A |] ==> converse(f)`(f`a) = a"
by (blast intro: apply_Pair apply_equality converseI)
lemma left_inverse [simp]: "[| f ∈ inj(A,B); a ∈ A |] ==> converse(f)`(f`a) = a"
by (blast intro: left_inverse_lemma inj_converse_fun inj_is_fun)
lemma left_inverse_eq:
"[|f ∈ inj(A,B); f ` x = y; x ∈ A|] ==> converse(f) ` y = x"
by auto
lemmas left_inverse_bij = bij_is_inj [THEN left_inverse]
lemma right_inverse_lemma:
"[| f ∈ A->B; converse(f): C->A; b ∈ C |] ==> f`(converse(f)`b) = b"
by (rule apply_Pair [THEN converseD [THEN apply_equality]], auto)
lemma right_inverse [simp]:
"[| f ∈ inj(A,B); b ∈ range(f) |] ==> f`(converse(f)`b) = b"
by (blast intro: right_inverse_lemma inj_converse_fun inj_is_fun)
lemma right_inverse_bij: "[| f ∈ bij(A,B); b ∈ B |] ==> f`(converse(f)`b) = b"
by (force simp add: bij_def surj_range)
subsection‹Converses of Injections, Surjections, Bijections›
lemma inj_converse_inj: "f ∈ inj(A,B) ==> converse(f): inj(range(f), A)"
apply (rule f_imp_injective)
apply (erule inj_converse_fun, clarify)
apply (rule right_inverse)
apply assumption
apply blast
done
lemma inj_converse_surj: "f ∈ inj(A,B) ==> converse(f): surj(range(f), A)"
by (blast intro: f_imp_surjective inj_converse_fun left_inverse inj_is_fun
range_of_fun [THEN apply_type])
text‹Adding this as an intro! rule seems to cause looping›
lemma bij_converse_bij [TC]: "f ∈ bij(A,B) ==> converse(f): bij(B,A)"
apply (unfold bij_def)
apply (fast elim: surj_range [THEN subst] inj_converse_inj inj_converse_surj)
done
subsection‹Composition of Two Relations›
text‹The inductive definition package could derive these theorems for \<^term>‹r O s››
lemma compI [intro]: "[| <a,b>:s; <b,c>:r |] ==> <a,c> ∈ r O s"
by (unfold comp_def, blast)
lemma compE [elim!]:
"[| xz ∈ r O s;
!!x y z. [| xz=<x,z>; <x,y>:s; <y,z>:r |] ==> P |]
==> P"
by (unfold comp_def, blast)
lemma compEpair:
"[| <a,c> ∈ r O s;
!!y. [| <a,y>:s; <y,c>:r |] ==> P |]
==> P"
by (erule compE, simp)
lemma converse_comp: "converse(R O S) = converse(S) O converse(R)"
by blast
subsection‹Domain and Range -- see Suppes, Section 3.1›
text‹Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327›
lemma range_comp: "range(r O s) ⊆ range(r)"
by blast
lemma range_comp_eq: "domain(r) ⊆ range(s) ==> range(r O s) = range(r)"
by (rule range_comp [THEN equalityI], blast)
lemma domain_comp: "domain(r O s) ⊆ domain(s)"
by blast
lemma domain_comp_eq: "range(s) ⊆ domain(r) ==> domain(r O s) = domain(s)"
by (rule domain_comp [THEN equalityI], blast)
lemma image_comp: "(r O s)``A = r``(s``A)"
by blast
lemma inj_inj_range: "f ∈ inj(A,B) ==> f ∈ inj(A,range(f))"
by (auto simp add: inj_def Pi_iff function_def)
lemma inj_bij_range: "f ∈ inj(A,B) ==> f ∈ bij(A,range(f))"
by (auto simp add: bij_def intro: inj_inj_range inj_is_fun fun_is_surj)
subsection‹Other Results›
lemma comp_mono: "[| r'<=r; s'<=s |] ==> (r' O s') ⊆ (r O s)"
by blast
text‹composition preserves relations›
lemma comp_rel: "[| s<=A*B; r<=B*C |] ==> (r O s) ⊆ A*C"
by blast
text‹associative law for composition›
lemma comp_assoc: "(r O s) O t = r O (s O t)"
by blast
lemma left_comp_id: "r<=A*B ==> id(B) O r = r"
by blast
lemma right_comp_id: "r<=A*B ==> r O id(A) = r"
by blast
subsection‹Composition Preserves Functions, Injections, and Surjections›
lemma comp_function: "[| function(g); function(f) |] ==> function(f O g)"
by (unfold function_def, blast)
text‹Don't think the premises can be weakened much›
lemma comp_fun: "[| g ∈ A->B; f ∈ B->C |] ==> (f O g) ∈ A->C"
apply (auto simp add: Pi_def comp_function Pow_iff comp_rel)
apply (subst range_rel_subset [THEN domain_comp_eq], auto)
done
lemma comp_fun_apply [simp]:
"[| g ∈ A->B; a ∈ A |] ==> (f O g)`a = f`(g`a)"
apply (frule apply_Pair, assumption)
apply (simp add: apply_def image_comp)
apply (blast dest: apply_equality)
done
text‹Simplifies compositions of lambda-abstractions›
lemma comp_lam:
"[| !!x. x ∈ A ==> b(x): B |]
==> (λy∈B. c(y)) O (λx∈A. b(x)) = (λx∈A. c(b(x)))"
apply (subgoal_tac "(λx∈A. b(x)) ∈ A -> B")
apply (rule fun_extension)
apply (blast intro: comp_fun lam_funtype)
apply (rule lam_funtype)
apply simp
apply (simp add: lam_type)
done
lemma comp_inj:
"[| g ∈ inj(A,B); f ∈ inj(B,C) |] ==> (f O g) ∈ inj(A,C)"
apply (frule inj_is_fun [of g])
apply (frule inj_is_fun [of f])
apply (rule_tac d = "%y. converse (g) ` (converse (f) ` y)" in f_imp_injective)
apply (blast intro: comp_fun, simp)
done
lemma comp_surj:
"[| g ∈ surj(A,B); f ∈ surj(B,C) |] ==> (f O g) ∈ surj(A,C)"
apply (unfold surj_def)
apply (blast intro!: comp_fun comp_fun_apply)
done
lemma comp_bij:
"[| g ∈ bij(A,B); f ∈ bij(B,C) |] ==> (f O g) ∈ bij(A,C)"
apply (unfold bij_def)
apply (blast intro: comp_inj comp_surj)
done
subsection‹Dual Properties of \<^term>‹inj› and \<^term>‹surj››
text‹Useful for proofs from
D Pastre. Automatic theorem proving in set theory.
Artificial Intelligence, 10:1--27, 1978.›
lemma comp_mem_injD1:
"[| (f O g): inj(A,C); g ∈ A->B; f ∈ B->C |] ==> g ∈ inj(A,B)"
by (unfold inj_def, force)
lemma comp_mem_injD2:
"[| (f O g): inj(A,C); g ∈ surj(A,B); f ∈ B->C |] ==> f ∈ inj(B,C)"
apply (unfold inj_def surj_def, safe)
apply (rule_tac x1 = x in bspec [THEN bexE])
apply (erule_tac [3] x1 = w in bspec [THEN bexE], assumption+, safe)
apply (rule_tac t = "(`) (g) " in subst_context)
apply (erule asm_rl bspec [THEN bspec, THEN mp])+
apply (simp (no_asm_simp))
done
lemma comp_mem_surjD1:
"[| (f O g): surj(A,C); g ∈ A->B; f ∈ B->C |] ==> f ∈ surj(B,C)"
apply (unfold surj_def)
apply (blast intro!: comp_fun_apply [symmetric] apply_funtype)
done
lemma comp_mem_surjD2:
"[| (f O g): surj(A,C); g ∈ A->B; f ∈ inj(B,C) |] ==> g ∈ surj(A,B)"
apply (unfold inj_def surj_def, safe)
apply (drule_tac x = "f`y" in bspec, auto)
apply (blast intro: apply_funtype)
done
subsubsection‹Inverses of Composition›
text‹left inverse of composition; one inclusion is
\<^term>‹f ∈ A->B ==> id(A) ⊆ converse(f) O f››
lemma left_comp_inverse: "f ∈ inj(A,B) ==> converse(f) O f = id(A)"
apply (unfold inj_def, clarify)
apply (rule equalityI)
apply (auto simp add: apply_iff, blast)
done
text‹right inverse of composition; one inclusion is
\<^term>‹f ∈ A->B ==> f O converse(f) ⊆ id(B)››
lemma right_comp_inverse:
"f ∈ surj(A,B) ==> f O converse(f) = id(B)"
apply (simp add: surj_def, clarify)
apply (rule equalityI)
apply (best elim: domain_type range_type dest: apply_equality2)
apply (blast intro: apply_Pair)
done
subsubsection‹Proving that a Function is a Bijection›
lemma comp_eq_id_iff:
"[| f ∈ A->B; g ∈ B->A |] ==> f O g = id(B) ⟷ (∀y∈B. f`(g`y)=y)"
apply (unfold id_def, safe)
apply (drule_tac t = "%h. h`y " in subst_context)
apply simp
apply (rule fun_extension)
apply (blast intro: comp_fun lam_type)
apply auto
done
lemma fg_imp_bijective:
"[| f ∈ A->B; g ∈ B->A; f O g = id(B); g O f = id(A) |] ==> f ∈ bij(A,B)"
apply (unfold bij_def)
apply (simp add: comp_eq_id_iff)
apply (blast intro: f_imp_injective f_imp_surjective apply_funtype)
done
lemma nilpotent_imp_bijective: "[| f ∈ A->A; f O f = id(A) |] ==> f ∈ bij(A,A)"
by (blast intro: fg_imp_bijective)
lemma invertible_imp_bijective:
"[| converse(f): B->A; f ∈ A->B |] ==> f ∈ bij(A,B)"
by (simp add: fg_imp_bijective comp_eq_id_iff
left_inverse_lemma right_inverse_lemma)
subsubsection‹Unions of Functions›
text‹See similar theorems in func.thy›
text‹Theorem by KG, proof by LCP›
lemma inj_disjoint_Un:
"[| f ∈ inj(A,B); g ∈ inj(C,D); B ∩ D = 0 |]
==> (λa∈A ∪ C. if a ∈ A then f`a else g`a) ∈ inj(A ∪ C, B ∪ D)"
apply (rule_tac d = "%z. if z ∈ B then converse (f) `z else converse (g) `z"
in lam_injective)
apply (auto simp add: inj_is_fun [THEN apply_type])
done
lemma surj_disjoint_Un:
"[| f ∈ surj(A,B); g ∈ surj(C,D); A ∩ C = 0 |]
==> (f ∪ g) ∈ surj(A ∪ C, B ∪ D)"
apply (simp add: surj_def fun_disjoint_Un)
apply (blast dest!: domain_of_fun
intro!: fun_disjoint_apply1 fun_disjoint_apply2)
done
text‹A simple, high-level proof; the version for injections follows from it,
using \<^term>‹f ∈ inj(A,B) ⟷ f ∈ bij(A,range(f))››
lemma bij_disjoint_Un:
"[| f ∈ bij(A,B); g ∈ bij(C,D); A ∩ C = 0; B ∩ D = 0 |]
==> (f ∪ g) ∈ bij(A ∪ C, B ∪ D)"
apply (rule invertible_imp_bijective)
apply (subst converse_Un)
apply (auto intro: fun_disjoint_Un bij_is_fun bij_converse_bij)
done
subsubsection‹Restrictions as Surjections and Bijections›
lemma surj_image:
"f ∈ Pi(A,B) ==> f ∈ surj(A, f``A)"
apply (simp add: surj_def)
apply (blast intro: apply_equality apply_Pair Pi_type)
done
lemma surj_image_eq: "f ∈ surj(A, B) ==> f``A = B"
by (auto simp add: surj_def image_fun) (blast dest: apply_type)
lemma restrict_image [simp]: "restrict(f,A) `` B = f `` (A ∩ B)"
by (auto simp add: restrict_def)
lemma restrict_inj:
"[| f ∈ inj(A,B); C<=A |] ==> restrict(f,C): inj(C,B)"
apply (unfold inj_def)
apply (safe elim!: restrict_type2, auto)
done
lemma restrict_surj: "[| f ∈ Pi(A,B); C<=A |] ==> restrict(f,C): surj(C, f``C)"
apply (insert restrict_type2 [THEN surj_image])
apply (simp add: restrict_image)
done
lemma restrict_bij:
"[| f ∈ inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)"
apply (simp add: inj_def bij_def)
apply (blast intro: restrict_surj surj_is_fun)
done
subsubsection‹Lemmas for Ramsey's Theorem›
lemma inj_weaken_type: "[| f ∈ inj(A,B); B<=D |] ==> f ∈ inj(A,D)"
apply (unfold inj_def)
apply (blast intro: fun_weaken_type)
done
lemma inj_succ_restrict:
"[| f ∈ inj(succ(m), A) |] ==> restrict(f,m) ∈ inj(m, A-{f`m})"
apply (rule restrict_bij [THEN bij_is_inj, THEN inj_weaken_type], assumption, blast)
apply (unfold inj_def)
apply (fast elim: range_type mem_irrefl dest: apply_equality)
done
lemma inj_extend:
"[| f ∈ inj(A,B); a∉A; b∉B |]
==> cons(<a,b>,f) ∈ inj(cons(a,A), cons(b,B))"
apply (unfold inj_def)
apply (force intro: apply_type simp add: fun_extend)
done
end