[13]
|
A. Creiner and S. Jackson.
Borel complexity and Ramsey largeness of sets of oracles separating
complexity classes.
MLQ Math. Log. Q., 69 (3): 267–286 (2023).
[ bib |
Download Review ]
|
[12]
|
F. Calderoni, D. Marker, L. Motto Ros, and A. Shani.
Anti-classification results for groups acting freely on the line.
Advances in Mathematics, 418: 108938 (2023).
[ bib |
DOI |
Download Review ]
|
[11]
|
M. Müller.
Typical forcings, NP search problems and an extension of a theorem
of Riis.
Ann. Pure Appl. Logic, 172 (4): Paper No. 102930, 44
(2021).
[ bib |
DOI |
Download Review ]
|
[10]
|
M. Džamonja, S. Schmitz, and P. Schnoebelen.
On ordinal invariants in well quasi orders and finite antichain
orders.
In Well-quasi orders in computation, logic, language and
reasoning—a unifying concept of proof theory, automata theory, formal
languages and descriptive set theory, vol. 53 of Trends Log. Stud.
Log. Libr., pp. 29–54. Springer, Cham (2020).
[ bib |
DOI |
Download Review ]
|
[9]
|
A. Alexandru and G. Ciobanu.
Properties of the atoms in finitely supported structures.
Arch. Math. Logic, 59 (1-2): 229–256 (2020).
[ bib |
DOI |
Download Review ]
|
[8]
|
J. Cabessa and O. Finkel.
Computational capabilities of analog and evolving neural networks
over infinite input streams.
J. Comput. System Sci., 101: 86–99 (2019).
[ bib |
DOI |
Download Review ]
|
[7]
|
S. Steila.
Some algebraic equivalent forms of R⊆L.
Fund. Math., 246 (2): 161–180 (2019).
[ bib |
DOI |
Download Review ]
|
[6]
|
L. Barto, J. Opršal, and M. Pinsker.
The wonderland of reflections.
Israel J. Math., 223 (1): 363–398 (2018).
[ bib |
DOI |
Download Review ]
|
[5]
|
Z. Janelidze and N. Martins-Ferreira.
Involution-rigidness—a new exactness property, and its weak
version.
J. Algebra Appl., 16 (4): 1750074, 14 (2017).
[ bib |
DOI |
Download Review ]
|
[4]
|
K. A. Kearnes, A. Szendrei, and R. Willard.
Simpler Maltsev conditions for (weak) difference terms in locally
finite varieties.
Algebra Universalis, 78 (4): 555–561 (2017).
[ bib |
DOI |
Download Review ]
|
[3]
|
M. V. Badano and D. J. Vaggione.
Equational definability of (complementary) central elements.
Internat. J. Algebra Comput., 26 (3): 509–532
(2016).
[ bib |
DOI |
Download Review ]
|
[2]
|
J. Parrow and T. Weber.
The largest respectful function.
Log. Methods Comput. Sci., 12 (2): Paper No. 11, 8
(2016).
[ bib |
DOI |
Download Review ]
|
[1]
|
M. V. Badano and D. J. Vaggione.
Varieties with equationally definable factor congruences.
Algebra Universalis, 70 (4): 327–345 (2013).
[ bib |
DOI |
Download Review ]
|