Pedro Sánchez Terraf

CIEM-FaMAFUniversidad Nacional de Córdoba

Revisiones publicadas

Zentralblatt MATH

¡Este servicio de revisiones ahora es de acceso abierto! Fíjense acá.

MathReviews

[13] A. Creiner y S. Jackson. Borel complexity and Ramsey largeness of sets of oracles separating complexity classes. MLQ Math. Log. Q., 69 (3): 267–286 (2023). [ bib | Descargar Reseña ]
[12] F. Calderoni, D. Marker, L. Motto Ros, y A. Shani. Anti-classification results for groups acting freely on the line. Advances in Mathematics, 418: 108938 (2023). [ bib | DOI | Descargar Reseña ]
[11] M. Müller. Typical forcings, NP search problems and an extension of a theorem of Riis. Ann. Pure Appl. Logic, 172 (4): Paper No. 102930, 44 (2021). [ bib | DOI | Descargar Reseña ]
[10] M. Džamonja, S. Schmitz, y P. Schnoebelen. On ordinal invariants in well quasi orders and finite antichain orders. En Well-quasi orders in computation, logic, language and reasoning—a unifying concept of proof theory, automata theory, formal languages and descriptive set theory, tomo 53 de Trends Log. Stud. Log. Libr., págs. 29–54. Springer, Cham (2020). [ bib | DOI | Descargar Reseña ]
[9] A. Alexandru y G. Ciobanu. Properties of the atoms in finitely supported structures. Arch. Math. Logic, 59 (1-2): 229–256 (2020). [ bib | DOI | Descargar Reseña ]
[8] J. Cabessa y O. Finkel. Computational capabilities of analog and evolving neural networks over infinite input streams. J. Comput. System Sci., 101: 86–99 (2019). [ bib | DOI | Descargar Reseña ]
[7] S. Steila. Some algebraic equivalent forms of RL. Fund. Math., 246 (2): 161–180 (2019). [ bib | DOI | Descargar Reseña ]
[6] L. Barto, J. Opršal, y M. Pinsker. The wonderland of reflections. Israel J. Math., 223 (1): 363–398 (2018). [ bib | DOI | Descargar Reseña ]
[5] Z. Janelidze y N. Martins-Ferreira. Involution-rigidness—a new exactness property, and its weak version. J. Algebra Appl., 16 (4): 1750074, 14 (2017). [ bib | DOI | Descargar Reseña ]
[4] K. A. Kearnes, A. Szendrei, y R. Willard. Simpler Maltsev conditions for (weak) difference terms in locally finite varieties. Algebra Universalis, 78 (4): 555–561 (2017). [ bib | DOI | Descargar Reseña ]
[3] M. V. Badano y D. J. Vaggione. Equational definability of (complementary) central elements. Internat. J. Algebra Comput., 26 (3): 509–532 (2016). [ bib | DOI | Descargar Reseña ]
[2] J. Parrow y T. Weber. The largest respectful function. Log. Methods Comput. Sci., 12 (2): Paper No. 11, 8 (2016). [ bib | DOI | Descargar Reseña ]
[1] M. V. Badano y D. J. Vaggione. Varieties with equationally definable factor congruences. Algebra Universalis, 70 (4): 327–345 (2013). [ bib | DOI | Descargar Reseña ]