section‹Relations: Their General Properties and Transitive Closure›
theory Trancl imports Fixedpt Perm begin
definition
refl :: "[i,i]=>o" where
"refl(A,r) == (∀x∈A. <x,x> ∈ r)"
definition
irrefl :: "[i,i]=>o" where
"irrefl(A,r) == ∀x∈A. <x,x> ∉ r"
definition
sym :: "i=>o" where
"sym(r) == ∀x y. <x,y>: r ⟶ <y,x>: r"
definition
asym :: "i=>o" where
"asym(r) == ∀x y. <x,y>:r ⟶ ~ <y,x>:r"
definition
antisym :: "i=>o" where
"antisym(r) == ∀x y.<x,y>:r ⟶ <y,x>:r ⟶ x=y"
definition
trans :: "i=>o" where
"trans(r) == ∀x y z. <x,y>: r ⟶ <y,z>: r ⟶ <x,z>: r"
definition
trans_on :: "[i,i]=>o" (‹trans[_]'(_')›) where
"trans[A](r) == ∀x∈A. ∀y∈A. ∀z∈A.
<x,y>: r ⟶ <y,z>: r ⟶ <x,z>: r"
definition
rtrancl :: "i=>i" (‹(_^*)› [100] 100) where
"r^* == lfp(field(r)*field(r), %s. id(field(r)) ∪ (r O s))"
definition
trancl :: "i=>i" (‹(_^+)› [100] 100) where
"r^+ == r O r^*"
definition
equiv :: "[i,i]=>o" where
"equiv(A,r) == r ⊆ A*A & refl(A,r) & sym(r) & trans(r)"
subsection‹General properties of relations›
subsubsection‹irreflexivity›
lemma irreflI:
"[| !!x. x ∈ A ==> <x,x> ∉ r |] ==> irrefl(A,r)"
by (simp add: irrefl_def)
lemma irreflE: "[| irrefl(A,r); x ∈ A |] ==> <x,x> ∉ r"
by (simp add: irrefl_def)
subsubsection‹symmetry›
lemma symI:
"[| !!x y.<x,y>: r ==> <y,x>: r |] ==> sym(r)"
by (unfold sym_def, blast)
lemma symE: "[| sym(r); <x,y>: r |] ==> <y,x>: r"
by (unfold sym_def, blast)
subsubsection‹antisymmetry›
lemma antisymI:
"[| !!x y.[| <x,y>: r; <y,x>: r |] ==> x=y |] ==> antisym(r)"
by (simp add: antisym_def, blast)
lemma antisymE: "[| antisym(r); <x,y>: r; <y,x>: r |] ==> x=y"
by (simp add: antisym_def, blast)
subsubsection‹transitivity›
lemma transD: "[| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r"
by (unfold trans_def, blast)
lemma trans_onD:
"[| trans[A](r); <a,b>:r; <b,c>:r; a ∈ A; b ∈ A; c ∈ A |] ==> <a,c>:r"
by (unfold trans_on_def, blast)
lemma trans_imp_trans_on: "trans(r) ==> trans[A](r)"
by (unfold trans_def trans_on_def, blast)
lemma trans_on_imp_trans: "[|trans[A](r); r ⊆ A*A|] ==> trans(r)"
by (simp add: trans_on_def trans_def, blast)
subsection‹Transitive closure of a relation›
lemma rtrancl_bnd_mono:
"bnd_mono(field(r)*field(r), %s. id(field(r)) ∪ (r O s))"
by (rule bnd_monoI, blast+)
lemma rtrancl_mono: "r<=s ==> r^* ⊆ s^*"
apply (unfold rtrancl_def)
apply (rule lfp_mono)
apply (rule rtrancl_bnd_mono)+
apply blast
done
lemmas rtrancl_unfold =
rtrancl_bnd_mono [THEN rtrancl_def [THEN def_lfp_unfold]]
lemmas rtrancl_type = rtrancl_def [THEN def_lfp_subset]
lemma relation_rtrancl: "relation(r^*)"
apply (simp add: relation_def)
apply (blast dest: rtrancl_type [THEN subsetD])
done
lemma rtrancl_refl: "[| a ∈ field(r) |] ==> <a,a> ∈ r^*"
apply (rule rtrancl_unfold [THEN ssubst])
apply (erule idI [THEN UnI1])
done
lemma rtrancl_into_rtrancl: "[| <a,b> ∈ r^*; <b,c> ∈ r |] ==> <a,c> ∈ r^*"
apply (rule rtrancl_unfold [THEN ssubst])
apply (rule compI [THEN UnI2], assumption, assumption)
done
lemma r_into_rtrancl: "<a,b> ∈ r ==> <a,b> ∈ r^*"
by (rule rtrancl_refl [THEN rtrancl_into_rtrancl], blast+)
lemma r_subset_rtrancl: "relation(r) ==> r ⊆ r^*"
by (simp add: relation_def, blast intro: r_into_rtrancl)
lemma rtrancl_field: "field(r^*) = field(r)"
by (blast intro: r_into_rtrancl dest!: rtrancl_type [THEN subsetD])
lemma rtrancl_full_induct [case_names initial step, consumes 1]:
"[| <a,b> ∈ r^*;
!!x. x ∈ field(r) ==> P(<x,x>);
!!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |]
==> P(<a,b>)"
by (erule def_induct [OF rtrancl_def rtrancl_bnd_mono], blast)
lemma rtrancl_induct [case_names initial step, induct set: rtrancl]:
"[| <a,b> ∈ r^*;
P(a);
!!y z.[| <a,y> ∈ r^*; <y,z> ∈ r; P(y) |] ==> P(z)
|] ==> P(b)"
apply (subgoal_tac "∀y. <a,b> = <a,y> ⟶ P (y) ")
apply (erule spec [THEN mp], rule refl)
apply (erule rtrancl_full_induct, blast+)
done
lemma trans_rtrancl: "trans(r^*)"
apply (unfold trans_def)
apply (intro allI impI)
apply (erule_tac b = z in rtrancl_induct, assumption)
apply (blast intro: rtrancl_into_rtrancl)
done
lemmas rtrancl_trans = trans_rtrancl [THEN transD]
lemma rtranclE:
"[| <a,b> ∈ r^*; (a=b) ==> P;
!!y.[| <a,y> ∈ r^*; <y,b> ∈ r |] ==> P |]
==> P"
apply (subgoal_tac "a = b | (∃y. <a,y> ∈ r^* & <y,b> ∈ r) ")
apply blast
apply (erule rtrancl_induct, blast+)
done
lemma trans_trancl: "trans(r^+)"
apply (unfold trans_def trancl_def)
apply (blast intro: rtrancl_into_rtrancl
trans_rtrancl [THEN transD, THEN compI])
done
lemmas trans_on_trancl = trans_trancl [THEN trans_imp_trans_on]
lemmas trancl_trans = trans_trancl [THEN transD]
lemma trancl_into_rtrancl: "<a,b> ∈ r^+ ==> <a,b> ∈ r^*"
apply (unfold trancl_def)
apply (blast intro: rtrancl_into_rtrancl)
done
lemma r_into_trancl: "<a,b> ∈ r ==> <a,b> ∈ r^+"
apply (unfold trancl_def)
apply (blast intro!: rtrancl_refl)
done
lemma r_subset_trancl: "relation(r) ==> r ⊆ r^+"
by (simp add: relation_def, blast intro: r_into_trancl)
lemma rtrancl_into_trancl1: "[| <a,b> ∈ r^*; <b,c> ∈ r |] ==> <a,c> ∈ r^+"
by (unfold trancl_def, blast)
lemma rtrancl_into_trancl2:
"[| <a,b> ∈ r; <b,c> ∈ r^* |] ==> <a,c> ∈ r^+"
apply (erule rtrancl_induct)
apply (erule r_into_trancl)
apply (blast intro: r_into_trancl trancl_trans)
done
lemma trancl_induct [case_names initial step, induct set: trancl]:
"[| <a,b> ∈ r^+;
!!y. [| <a,y> ∈ r |] ==> P(y);
!!y z.[| <a,y> ∈ r^+; <y,z> ∈ r; P(y) |] ==> P(z)
|] ==> P(b)"
apply (rule compEpair)
apply (unfold trancl_def, assumption)
apply (subgoal_tac "∀z. <y,z> ∈ r ⟶ P (z) ")
apply blast
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_into_trancl1)+
done
lemma tranclE:
"[| <a,b> ∈ r^+;
<a,b> ∈ r ==> P;
!!y.[| <a,y> ∈ r^+; <y,b> ∈ r |] ==> P
|] ==> P"
apply (subgoal_tac "<a,b> ∈ r | (∃y. <a,y> ∈ r^+ & <y,b> ∈ r) ")
apply blast
apply (rule compEpair)
apply (unfold trancl_def, assumption)
apply (erule rtranclE)
apply (blast intro: rtrancl_into_trancl1)+
done
lemma trancl_type: "r^+ ⊆ field(r)*field(r)"
apply (unfold trancl_def)
apply (blast elim: rtrancl_type [THEN subsetD, THEN SigmaE2])
done
lemma relation_trancl: "relation(r^+)"
apply (simp add: relation_def)
apply (blast dest: trancl_type [THEN subsetD])
done
lemma trancl_subset_times: "r ⊆ A * A ==> r^+ ⊆ A * A"
by (insert trancl_type [of r], blast)
lemma trancl_mono: "r<=s ==> r^+ ⊆ s^+"
by (unfold trancl_def, intro comp_mono rtrancl_mono)
lemma trancl_eq_r: "[|relation(r); trans(r)|] ==> r^+ = r"
apply (rule equalityI)
prefer 2 apply (erule r_subset_trancl, clarify)
apply (frule trancl_type [THEN subsetD], clarify)
apply (erule trancl_induct, assumption)
apply (blast dest: transD)
done
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
apply (rule equalityI, auto)
prefer 2
apply (frule rtrancl_type [THEN subsetD])
apply (blast intro: r_into_rtrancl )
txt‹converse direction›
apply (frule rtrancl_type [THEN subsetD], clarify)
apply (erule rtrancl_induct)
apply (simp add: rtrancl_refl rtrancl_field)
apply (blast intro: rtrancl_trans)
done
lemma rtrancl_subset: "[| R ⊆ S; S ⊆ R^* |] ==> S^* = R^*"
apply (drule rtrancl_mono)
apply (drule rtrancl_mono, simp_all, blast)
done
lemma rtrancl_Un_rtrancl:
"[| relation(r); relation(s) |] ==> (r^* ∪ s^*)^* = (r ∪ s)^*"
apply (rule rtrancl_subset)
apply (blast dest: r_subset_rtrancl)
apply (blast intro: rtrancl_mono [THEN subsetD])
done
lemma rtrancl_converseD: "<x,y>:converse(r)^* ==> <x,y>:converse(r^*)"
apply (rule converseI)
apply (frule rtrancl_type [THEN subsetD])
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_refl)
apply (blast intro: r_into_rtrancl rtrancl_trans)
done
lemma rtrancl_converseI: "<x,y>:converse(r^*) ==> <x,y>:converse(r)^*"
apply (drule converseD)
apply (frule rtrancl_type [THEN subsetD])
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_refl)
apply (blast intro: r_into_rtrancl rtrancl_trans)
done
lemma rtrancl_converse: "converse(r)^* = converse(r^*)"
apply (safe intro!: equalityI)
apply (frule rtrancl_type [THEN subsetD])
apply (safe dest!: rtrancl_converseD intro!: rtrancl_converseI)
done
lemma trancl_converseD: "<a, b>:converse(r)^+ ==> <a, b>:converse(r^+)"
apply (erule trancl_induct)
apply (auto intro: r_into_trancl trancl_trans)
done
lemma trancl_converseI: "<x,y>:converse(r^+) ==> <x,y>:converse(r)^+"
apply (drule converseD)
apply (erule trancl_induct)
apply (auto intro: r_into_trancl trancl_trans)
done
lemma trancl_converse: "converse(r)^+ = converse(r^+)"
apply (safe intro!: equalityI)
apply (frule trancl_type [THEN subsetD])
apply (safe dest!: trancl_converseD intro!: trancl_converseI)
done
lemma converse_trancl_induct [case_names initial step, consumes 1]:
"[| <a, b>:r^+; !!y. <y, b> :r ==> P(y);
!!y z. [| <y, z> ∈ r; <z, b> ∈ r^+; P(z) |] ==> P(y) |]
==> P(a)"
apply (drule converseI)
apply (simp (no_asm_use) add: trancl_converse [symmetric])
apply (erule trancl_induct)
apply (auto simp add: trancl_converse)
done
end