section‹Well-Founded Recursion›
theory WF imports Trancl begin
definition
wf :: "i=>o" where
"wf(r) == ∀Z. Z=0 | (∃x∈Z. ∀y. <y,x>:r ⟶ ~ y ∈ Z)"
definition
wf_on :: "[i,i]=>o" (‹wf[_]'(_')›) where
"wf_on(A,r) == wf(r ∩ A*A)"
definition
is_recfun :: "[i, i, [i,i]=>i, i] =>o" where
"is_recfun(r,a,H,f) == (f = (λx∈r-``{a}. H(x, restrict(f, r-``{x}))))"
definition
the_recfun :: "[i, i, [i,i]=>i] =>i" where
"the_recfun(r,a,H) == (THE f. is_recfun(r,a,H,f))"
definition
wftrec :: "[i, i, [i,i]=>i] =>i" where
"wftrec(r,a,H) == H(a, the_recfun(r,a,H))"
definition
wfrec :: "[i, i, [i,i]=>i] =>i" where
"wfrec(r,a,H) == wftrec(r^+, a, %x f. H(x, restrict(f,r-``{x})))"
definition
wfrec_on :: "[i, i, i, [i,i]=>i] =>i" (‹wfrec[_]'(_,_,_')›) where
"wfrec[A](r,a,H) == wfrec(r ∩ A*A, a, H)"
subsection‹Well-Founded Relations›
subsubsection‹Equivalences between \<^term>‹wf› and \<^term>‹wf_on››
lemma wf_imp_wf_on: "wf(r) ==> wf[A](r)"
by (unfold wf_def wf_on_def, force)
lemma wf_on_imp_wf: "[|wf[A](r); r ⊆ A*A|] ==> wf(r)"
by (simp add: wf_on_def subset_Int_iff)
lemma wf_on_field_imp_wf: "wf[field(r)](r) ==> wf(r)"
by (unfold wf_def wf_on_def, fast)
lemma wf_iff_wf_on_field: "wf(r) ⟷ wf[field(r)](r)"
by (blast intro: wf_imp_wf_on wf_on_field_imp_wf)
lemma wf_on_subset_A: "[| wf[A](r); B<=A |] ==> wf[B](r)"
by (unfold wf_on_def wf_def, fast)
lemma wf_on_subset_r: "[| wf[A](r); s<=r |] ==> wf[A](s)"
by (unfold wf_on_def wf_def, fast)
lemma wf_subset: "[|wf(s); r<=s|] ==> wf(r)"
by (simp add: wf_def, fast)
subsubsection‹Introduction Rules for \<^term>‹wf_on››
text‹If every non-empty subset of \<^term>‹A› has an \<^term>‹r›-minimal element
then we have \<^term>‹wf[A](r)›.›
lemma wf_onI:
assumes prem: "!!Z u. [| Z<=A; u ∈ Z; ∀x∈Z. ∃y∈Z. <y,x>:r |] ==> False"
shows "wf[A](r)"
apply (unfold wf_on_def wf_def)
apply (rule equals0I [THEN disjCI, THEN allI])
apply (rule_tac Z = Z in prem, blast+)
done
text‹If \<^term>‹r› allows well-founded induction over \<^term>‹A›
then we have \<^term>‹wf[A](r)›. Premise is equivalent to
\<^prop>‹!!B. ∀x∈A. (∀y. <y,x>: r ⟶ y ∈ B) ⟶ x ∈ B ==> A<=B››
lemma wf_onI2:
assumes prem: "!!y B. [| ∀x∈A. (∀y∈A. <y,x>:r ⟶ y ∈ B) ⟶ x ∈ B; y ∈ A |]
==> y ∈ B"
shows "wf[A](r)"
apply (rule wf_onI)
apply (rule_tac c=u in prem [THEN DiffE])
prefer 3 apply blast
apply fast+
done
subsubsection‹Well-founded Induction›
text‹Consider the least \<^term>‹z› in \<^term>‹domain(r)› such that
\<^term>‹P(z)› does not hold...›
lemma wf_induct_raw:
"[| wf(r);
!!x.[| ∀y. <y,x>: r ⟶ P(y) |] ==> P(x) |]
==> P(a)"
apply (unfold wf_def)
apply (erule_tac x = "{z ∈ domain(r). ~ P(z)}" in allE)
apply blast
done
lemmas wf_induct = wf_induct_raw [rule_format, consumes 1, case_names step, induct set: wf]
text‹The form of this rule is designed to match ‹wfI››
lemma wf_induct2:
"[| wf(r); a ∈ A; field(r)<=A;
!!x.[| x ∈ A; ∀y. <y,x>: r ⟶ P(y) |] ==> P(x) |]
==> P(a)"
apply (erule_tac P="a ∈ A" in rev_mp)
apply (erule_tac a=a in wf_induct, blast)
done
lemma field_Int_square: "field(r ∩ A*A) ⊆ A"
by blast
lemma wf_on_induct_raw [consumes 2, induct set: wf_on]:
"[| wf[A](r); a ∈ A;
!!x.[| x ∈ A; ∀y∈A. <y,x>: r ⟶ P(y) |] ==> P(x)
|] ==> P(a)"
apply (unfold wf_on_def)
apply (erule wf_induct2, assumption)
apply (rule field_Int_square, blast)
done
lemmas wf_on_induct =
wf_on_induct_raw [rule_format, consumes 2, case_names step, induct set: wf_on]
text‹If \<^term>‹r› allows well-founded induction
then we have \<^term>‹wf(r)›.›
lemma wfI:
"[| field(r)<=A;
!!y B. [| ∀x∈A. (∀y∈A. <y,x>:r ⟶ y ∈ B) ⟶ x ∈ B; y ∈ A|]
==> y ∈ B |]
==> wf(r)"
apply (rule wf_on_subset_A [THEN wf_on_field_imp_wf])
apply (rule wf_onI2)
prefer 2 apply blast
apply blast
done
subsection‹Basic Properties of Well-Founded Relations›
lemma wf_not_refl: "wf(r) ==> <a,a> ∉ r"
by (erule_tac a=a in wf_induct, blast)
lemma wf_not_sym [rule_format]: "wf(r) ==> ∀x. <a,x>:r ⟶ <x,a> ∉ r"
by (erule_tac a=a in wf_induct, blast)
lemmas wf_asym = wf_not_sym [THEN swap]
lemma wf_on_not_refl: "[| wf[A](r); a ∈ A |] ==> <a,a> ∉ r"
by (erule_tac a=a in wf_on_induct, assumption, blast)
lemma wf_on_not_sym [rule_format]:
"[| wf[A](r); a ∈ A |] ==> ∀b∈A. <a,b>:r ⟶ <b,a>∉r"
apply (erule_tac a=a in wf_on_induct, assumption, blast)
done
lemma wf_on_asym:
"[| wf[A](r); ~Z ==> <a,b> ∈ r;
<b,a> ∉ r ==> Z; ~Z ==> a ∈ A; ~Z ==> b ∈ A |] ==> Z"
by (blast dest: wf_on_not_sym)
lemma wf_on_chain3:
"[| wf[A](r); <a,b>:r; <b,c>:r; <c,a>:r; a ∈ A; b ∈ A; c ∈ A |] ==> P"
apply (subgoal_tac "∀y∈A. ∀z∈A. <a,y>:r ⟶ <y,z>:r ⟶ <z,a>:r ⟶ P",
blast)
apply (erule_tac a=a in wf_on_induct, assumption, blast)
done
text‹transitive closure of a WF relation is WF provided
\<^term>‹A› is downward closed›
lemma wf_on_trancl:
"[| wf[A](r); r-``A ⊆ A |] ==> wf[A](r^+)"
apply (rule wf_onI2)
apply (frule bspec [THEN mp], assumption+)
apply (erule_tac a = y in wf_on_induct, assumption)
apply (blast elim: tranclE, blast)
done
lemma wf_trancl: "wf(r) ==> wf(r^+)"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A)
apply (erule wf_on_trancl)
apply blast
apply (rule trancl_type [THEN field_rel_subset])
done
text‹\<^term>‹r-``{a}› is the set of everything under \<^term>‹a› in \<^term>‹r››
lemmas underI = vimage_singleton_iff [THEN iffD2]
lemmas underD = vimage_singleton_iff [THEN iffD1]
subsection‹The Predicate \<^term>‹is_recfun››
lemma is_recfun_type: "is_recfun(r,a,H,f) ==> f ∈ r-``{a} -> range(f)"
apply (unfold is_recfun_def)
apply (erule ssubst)
apply (rule lamI [THEN rangeI, THEN lam_type], assumption)
done
lemmas is_recfun_imp_function = is_recfun_type [THEN fun_is_function]
lemma apply_recfun:
"[| is_recfun(r,a,H,f); <x,a>:r |] ==> f`x = H(x, restrict(f,r-``{x}))"
apply (unfold is_recfun_def)
txt‹replace f only on the left-hand side›
apply (erule_tac P = "%x. t(x) = u" for t u in ssubst)
apply (simp add: underI)
done
lemma is_recfun_equal [rule_format]:
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,b,H,g) |]
==> <x,a>:r ⟶ <x,b>:r ⟶ f`x=g`x"
apply (frule_tac f = f in is_recfun_type)
apply (frule_tac f = g in is_recfun_type)
apply (simp add: is_recfun_def)
apply (erule_tac a=x in wf_induct)
apply (intro impI)
apply (elim ssubst)
apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def)
apply (rule_tac t = "%z. H (x, z)" for x in subst_context)
apply (subgoal_tac "∀y∈r-``{x}. ∀z. <y,z>:f ⟷ <y,z>:g")
apply (blast dest: transD)
apply (simp add: apply_iff)
apply (blast dest: transD intro: sym)
done
lemma is_recfun_cut:
"[| wf(r); trans(r);
is_recfun(r,a,H,f); is_recfun(r,b,H,g); <b,a>:r |]
==> restrict(f, r-``{b}) = g"
apply (frule_tac f = f in is_recfun_type)
apply (rule fun_extension)
apply (blast dest: transD intro: restrict_type2)
apply (erule is_recfun_type, simp)
apply (blast dest: transD intro: is_recfun_equal)
done
subsection‹Recursion: Main Existence Lemma›
lemma is_recfun_functional:
"[| wf(r); trans(r); is_recfun(r,a,H,f); is_recfun(r,a,H,g) |] ==> f=g"
by (blast intro: fun_extension is_recfun_type is_recfun_equal)
lemma the_recfun_eq:
"[| is_recfun(r,a,H,f); wf(r); trans(r) |] ==> the_recfun(r,a,H) = f"
apply (unfold the_recfun_def)
apply (blast intro: is_recfun_functional)
done
lemma is_the_recfun:
"[| is_recfun(r,a,H,f); wf(r); trans(r) |]
==> is_recfun(r, a, H, the_recfun(r,a,H))"
by (simp add: the_recfun_eq)
lemma unfold_the_recfun:
"[| wf(r); trans(r) |] ==> is_recfun(r, a, H, the_recfun(r,a,H))"
apply (rule_tac a=a in wf_induct, assumption)
apply (rename_tac a1)
apply (rule_tac f = "λy∈r-``{a1}. wftrec (r,y,H)" in is_the_recfun)
apply typecheck
apply (unfold is_recfun_def wftrec_def)
apply (rule lam_cong [OF refl])
apply (drule underD)
apply (fold is_recfun_def)
apply (rule_tac t = "%z. H(x, z)" for x in subst_context)
apply (rule fun_extension)
apply (blast intro: is_recfun_type)
apply (rule lam_type [THEN restrict_type2])
apply blast
apply (blast dest: transD)
apply atomize
apply (frule spec [THEN mp], assumption)
apply (subgoal_tac "<xa,a1> ∈ r")
apply (drule_tac x1 = xa in spec [THEN mp], assumption)
apply (simp add: vimage_singleton_iff
apply_recfun is_recfun_cut)
apply (blast dest: transD)
done
subsection‹Unfolding \<^term>‹wftrec(r,a,H)››
lemma the_recfun_cut:
"[| wf(r); trans(r); <b,a>:r |]
==> restrict(the_recfun(r,a,H), r-``{b}) = the_recfun(r,b,H)"
by (blast intro: is_recfun_cut unfold_the_recfun)
lemma wftrec:
"[| wf(r); trans(r) |] ==>
wftrec(r,a,H) = H(a, λx∈r-``{a}. wftrec(r,x,H))"
apply (unfold wftrec_def)
apply (subst unfold_the_recfun [unfolded is_recfun_def])
apply (simp_all add: vimage_singleton_iff [THEN iff_sym] the_recfun_cut)
done
subsubsection‹Removal of the Premise \<^term>‹trans(r)››
lemma wfrec:
"wf(r) ==> wfrec(r,a,H) = H(a, λx∈r-``{a}. wfrec(r,x,H))"
apply (unfold wfrec_def)
apply (erule wf_trancl [THEN wftrec, THEN ssubst])
apply (rule trans_trancl)
apply (rule vimage_pair_mono [THEN restrict_lam_eq, THEN subst_context])
apply (erule r_into_trancl)
apply (rule subset_refl)
done
lemma def_wfrec:
"[| !!x. h(x)==wfrec(r,x,H); wf(r) |] ==>
h(a) = H(a, λx∈r-``{a}. h(x))"
apply simp
apply (elim wfrec)
done
lemma wfrec_type:
"[| wf(r); a ∈ A; field(r)<=A;
!!x u. [| x ∈ A; u ∈ Pi(r-``{x}, B) |] ==> H(x,u) ∈ B(x)
|] ==> wfrec(r,a,H) ∈ B(a)"
apply (rule_tac a = a in wf_induct2, assumption+)
apply (subst wfrec, assumption)
apply (simp add: lam_type underD)
done
lemma wfrec_on:
"[| wf[A](r); a ∈ A |] ==>
wfrec[A](r,a,H) = H(a, λx∈(r-``{a}) ∩ A. wfrec[A](r,x,H))"
apply (unfold wf_on_def wfrec_on_def)
apply (erule wfrec [THEN trans])
apply (simp add: vimage_Int_square cons_subset_iff)
done
text‹Minimal-element characterization of well-foundedness›
lemma wf_eq_minimal:
"wf(r) ⟷ (∀Q x. x ∈ Q ⟶ (∃z∈Q. ∀y. <y,z>:r ⟶ y∉Q))"
by (unfold wf_def, blast)
end