section‹The Integers as Equivalence Classes Over Pairs of Natural Numbers›
theory Int imports EquivClass ArithSimp begin
definition
intrel :: i where
"intrel == {p ∈ (nat*nat)*(nat*nat).
∃x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
definition
int :: i where
"int == (nat*nat)//intrel"
definition
int_of :: "i=>i" (‹$# _› [80] 80) where
"$# m == intrel `` {<natify(m), 0>}"
definition
intify :: "i=>i" where
"intify(m) == if m ∈ int then m else $#0"
definition
raw_zminus :: "i=>i" where
"raw_zminus(z) == ⋃<x,y>∈z. intrel``{<y,x>}"
definition
zminus :: "i=>i" (‹$- _› [80] 80) where
"$- z == raw_zminus (intify(z))"
definition
znegative :: "i=>o" where
"znegative(z) == ∃x y. x<y & y∈nat & <x,y>∈z"
definition
iszero :: "i=>o" where
"iszero(z) == z = $# 0"
definition
raw_nat_of :: "i=>i" where
"raw_nat_of(z) == natify (⋃<x,y>∈z. x#-y)"
definition
nat_of :: "i=>i" where
"nat_of(z) == raw_nat_of (intify(z))"
definition
zmagnitude :: "i=>i" where
"zmagnitude(z) ==
THE m. m∈nat & ((~ znegative(z) & z = $# m) |
(znegative(z) & $- z = $# m))"
definition
raw_zmult :: "[i,i]=>i" where
"raw_zmult(z1,z2) ==
⋃p1∈z1. ⋃p2∈z2. split(%x1 y1. split(%x2 y2.
intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
definition
zmult :: "[i,i]=>i" (infixl ‹$*› 70) where
"z1 $* z2 == raw_zmult (intify(z1),intify(z2))"
definition
raw_zadd :: "[i,i]=>i" where
"raw_zadd (z1, z2) ==
⋃z1∈z1. ⋃z2∈z2. let <x1,y1>=z1; <x2,y2>=z2
in intrel``{<x1#+x2, y1#+y2>}"
definition
zadd :: "[i,i]=>i" (infixl ‹$+› 65) where
"z1 $+ z2 == raw_zadd (intify(z1),intify(z2))"
definition
zdiff :: "[i,i]=>i" (infixl ‹$-› 65) where
"z1 $- z2 == z1 $+ zminus(z2)"
definition
zless :: "[i,i]=>o" (infixl ‹$<› 50) where
"z1 $< z2 == znegative(z1 $- z2)"
definition
zle :: "[i,i]=>o" (infixl ‹$≤› 50) where
"z1 $≤ z2 == z1 $< z2 | intify(z1)=intify(z2)"
declare quotientE [elim!]
subsection‹Proving that \<^term>‹intrel› is an equivalence relation›
lemma intrel_iff [simp]:
"<<x1,y1>,<x2,y2>>: intrel ⟷
x1∈nat & y1∈nat & x2∈nat & y2∈nat & x1#+y2 = x2#+y1"
by (simp add: intrel_def)
lemma intrelI [intro!]:
"[| x1#+y2 = x2#+y1; x1∈nat; y1∈nat; x2∈nat; y2∈nat |]
==> <<x1,y1>,<x2,y2>>: intrel"
by (simp add: intrel_def)
lemma intrelE [elim!]:
"[| p ∈ intrel;
!!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>; x1#+y2 = x2#+y1;
x1∈nat; y1∈nat; x2∈nat; y2∈nat |] ==> Q |]
==> Q"
by (simp add: intrel_def, blast)
lemma int_trans_lemma:
"[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1"
apply (rule sym)
apply (erule add_left_cancel)+
apply (simp_all (no_asm_simp))
done
lemma equiv_intrel: "equiv(nat*nat, intrel)"
apply (simp add: equiv_def refl_def sym_def trans_def)
apply (fast elim!: sym int_trans_lemma)
done
lemma image_intrel_int: "[| m∈nat; n∈nat |] ==> intrel `` {<m,n>} ∈ int"
by (simp add: int_def)
declare equiv_intrel [THEN eq_equiv_class_iff, simp]
declare conj_cong [cong]
lemmas eq_intrelD = eq_equiv_class [OF _ equiv_intrel]
lemma int_of_type [simp,TC]: "$#m ∈ int"
by (simp add: int_def quotient_def int_of_def, auto)
lemma int_of_eq [iff]: "($# m = $# n) ⟷ natify(m)=natify(n)"
by (simp add: int_of_def)
lemma int_of_inject: "[| $#m = $#n; m∈nat; n∈nat |] ==> m=n"
by (drule int_of_eq [THEN iffD1], auto)
lemma intify_in_int [iff,TC]: "intify(x) ∈ int"
by (simp add: intify_def)
lemma intify_ident [simp]: "n ∈ int ==> intify(n) = n"
by (simp add: intify_def)
subsection‹Collapsing rules: to remove \<^term>‹intify›
from arithmetic expressions›
lemma intify_idem [simp]: "intify(intify(x)) = intify(x)"
by simp
lemma int_of_natify [simp]: "$# (natify(m)) = $# m"
by (simp add: int_of_def)
lemma zminus_intify [simp]: "$- (intify(m)) = $- m"
by (simp add: zminus_def)
lemma zadd_intify1 [simp]: "intify(x) $+ y = x $+ y"
by (simp add: zadd_def)
lemma zadd_intify2 [simp]: "x $+ intify(y) = x $+ y"
by (simp add: zadd_def)
lemma zdiff_intify1 [simp]:"intify(x) $- y = x $- y"
by (simp add: zdiff_def)
lemma zdiff_intify2 [simp]:"x $- intify(y) = x $- y"
by (simp add: zdiff_def)
lemma zmult_intify1 [simp]:"intify(x) $* y = x $* y"
by (simp add: zmult_def)
lemma zmult_intify2 [simp]:"x $* intify(y) = x $* y"
by (simp add: zmult_def)
lemma zless_intify1 [simp]:"intify(x) $< y ⟷ x $< y"
by (simp add: zless_def)
lemma zless_intify2 [simp]:"x $< intify(y) ⟷ x $< y"
by (simp add: zless_def)
lemma zle_intify1 [simp]:"intify(x) $≤ y ⟷ x $≤ y"
by (simp add: zle_def)
lemma zle_intify2 [simp]:"x $≤ intify(y) ⟷ x $≤ y"
by (simp add: zle_def)
subsection‹\<^term>‹zminus›: unary negation on \<^term>‹int››
lemma zminus_congruent: "(%<x,y>. intrel``{<y,x>}) respects intrel"
by (auto simp add: congruent_def add_ac)
lemma raw_zminus_type: "z ∈ int ==> raw_zminus(z) ∈ int"
apply (simp add: int_def raw_zminus_def)
apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent])
done
lemma zminus_type [TC,iff]: "$-z ∈ int"
by (simp add: zminus_def raw_zminus_type)
lemma raw_zminus_inject:
"[| raw_zminus(z) = raw_zminus(w); z ∈ int; w ∈ int |] ==> z=w"
apply (simp add: int_def raw_zminus_def)
apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe)
apply (auto dest: eq_intrelD simp add: add_ac)
done
lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)"
apply (simp add: zminus_def)
apply (blast dest!: raw_zminus_inject)
done
lemma zminus_inject: "[| $-z = $-w; z ∈ int; w ∈ int |] ==> z=w"
by auto
lemma raw_zminus:
"[| x∈nat; y∈nat |] ==> raw_zminus(intrel``{<x,y>}) = intrel `` {<y,x>}"
apply (simp add: raw_zminus_def UN_equiv_class [OF equiv_intrel zminus_congruent])
done
lemma zminus:
"[| x∈nat; y∈nat |]
==> $- (intrel``{<x,y>}) = intrel `` {<y,x>}"
by (simp add: zminus_def raw_zminus image_intrel_int)
lemma raw_zminus_zminus: "z ∈ int ==> raw_zminus (raw_zminus(z)) = z"
by (auto simp add: int_def raw_zminus)
lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)"
by (simp add: zminus_def raw_zminus_type raw_zminus_zminus)
lemma zminus_int0 [simp]: "$- ($#0) = $#0"
by (simp add: int_of_def zminus)
lemma zminus_zminus: "z ∈ int ==> $- ($- z) = z"
by simp
subsection‹\<^term>‹znegative›: the test for negative integers›
lemma znegative: "[| x∈nat; y∈nat |] ==> znegative(intrel``{<x,y>}) ⟷ x<y"
apply (cases "x<y")
apply (auto simp add: znegative_def not_lt_iff_le)
apply (subgoal_tac "y #+ x2 < x #+ y2", force)
apply (rule add_le_lt_mono, auto)
done
lemma not_znegative_int_of [iff]: "~ znegative($# n)"
by (simp add: znegative int_of_def)
lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))"
by (simp add: znegative int_of_def zminus natify_succ)
lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0"
by (simp add: znegative int_of_def zminus Ord_0_lt_iff [THEN iff_sym])
subsection‹\<^term>‹nat_of›: Coercion of an Integer to a Natural Number›
lemma nat_of_intify [simp]: "nat_of(intify(z)) = nat_of(z)"
by (simp add: nat_of_def)
lemma nat_of_congruent: "(λx. (λ⟨x,y⟩. x #- y)(x)) respects intrel"
by (auto simp add: congruent_def split: nat_diff_split)
lemma raw_nat_of:
"[| x∈nat; y∈nat |] ==> raw_nat_of(intrel``{<x,y>}) = x#-y"
by (simp add: raw_nat_of_def UN_equiv_class [OF equiv_intrel nat_of_congruent])
lemma raw_nat_of_int_of: "raw_nat_of($# n) = natify(n)"
by (simp add: int_of_def raw_nat_of)
lemma nat_of_int_of [simp]: "nat_of($# n) = natify(n)"
by (simp add: raw_nat_of_int_of nat_of_def)
lemma raw_nat_of_type: "raw_nat_of(z) ∈ nat"
by (simp add: raw_nat_of_def)
lemma nat_of_type [iff,TC]: "nat_of(z) ∈ nat"
by (simp add: nat_of_def raw_nat_of_type)
subsection‹zmagnitude: magnitide of an integer, as a natural number›
lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)"
by (auto simp add: zmagnitude_def int_of_eq)
lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n"
apply (drule sym)
apply (simp (no_asm_simp) add: int_of_eq)
done
lemma zmagnitude_zminus_int_of [simp]: "zmagnitude($- $# n) = natify(n)"
apply (simp add: zmagnitude_def)
apply (rule the_equality)
apply (auto dest!: not_znegative_imp_zero natify_int_of_eq
iff del: int_of_eq, auto)
done
lemma zmagnitude_type [iff,TC]: "zmagnitude(z)∈nat"
apply (simp add: zmagnitude_def)
apply (rule theI2, auto)
done
lemma not_zneg_int_of:
"[| z ∈ int; ~ znegative(z) |] ==> ∃n∈nat. z = $# n"
apply (auto simp add: int_def znegative int_of_def not_lt_iff_le)
apply (rename_tac x y)
apply (rule_tac x="x#-y" in bexI)
apply (auto simp add: add_diff_inverse2)
done
lemma not_zneg_mag [simp]:
"[| z ∈ int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z"
by (drule not_zneg_int_of, auto)
lemma zneg_int_of:
"[| znegative(z); z ∈ int |] ==> ∃n∈nat. z = $- ($# succ(n))"
by (auto simp add: int_def znegative zminus int_of_def dest!: less_imp_succ_add)
lemma zneg_mag [simp]:
"[| znegative(z); z ∈ int |] ==> $# (zmagnitude(z)) = $- z"
by (drule zneg_int_of, auto)
lemma int_cases: "z ∈ int ==> ∃n∈nat. z = $# n | z = $- ($# succ(n))"
apply (case_tac "znegative (z) ")
prefer 2 apply (blast dest: not_zneg_mag sym)
apply (blast dest: zneg_int_of)
done
lemma not_zneg_raw_nat_of:
"[| ~ znegative(z); z ∈ int |] ==> $# (raw_nat_of(z)) = z"
apply (drule not_zneg_int_of)
apply (auto simp add: raw_nat_of_type raw_nat_of_int_of)
done
lemma not_zneg_nat_of_intify:
"~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)"
by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of)
lemma not_zneg_nat_of: "[| ~ znegative(z); z ∈ int |] ==> $# (nat_of(z)) = z"
apply (simp (no_asm_simp) add: not_zneg_nat_of_intify)
done
lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0"
apply (subgoal_tac "intify(z) ∈ int")
apply (simp add: int_def)
apply (auto simp add: znegative nat_of_def raw_nat_of
split: nat_diff_split)
done
subsection‹\<^term>‹zadd›: addition on int›
text‹Congruence Property for Addition›
lemma zadd_congruent2:
"(%z1 z2. let <x1,y1>=z1; <x2,y2>=z2
in intrel``{<x1#+x2, y1#+y2>})
respects2 intrel"
apply (simp add: congruent2_def)
apply safe
apply (simp (no_asm_simp) add: add_assoc Let_def)
apply (rule_tac m1 = x1a in add_left_commute [THEN ssubst])
apply (rule_tac m1 = x2a in add_left_commute [THEN ssubst])
apply (simp (no_asm_simp) add: add_assoc [symmetric])
done
lemma raw_zadd_type: "[| z ∈ int; w ∈ int |] ==> raw_zadd(z,w) ∈ int"
apply (simp add: int_def raw_zadd_def)
apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+)
apply (simp add: Let_def)
done
lemma zadd_type [iff,TC]: "z $+ w ∈ int"
by (simp add: zadd_def raw_zadd_type)
lemma raw_zadd:
"[| x1∈nat; y1∈nat; x2∈nat; y2∈nat |]
==> raw_zadd (intrel``{<x1,y1>}, intrel``{<x2,y2>}) =
intrel `` {<x1#+x2, y1#+y2>}"
apply (simp add: raw_zadd_def
UN_equiv_class2 [OF equiv_intrel equiv_intrel zadd_congruent2])
apply (simp add: Let_def)
done
lemma zadd:
"[| x1∈nat; y1∈nat; x2∈nat; y2∈nat |]
==> (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =
intrel `` {<x1#+x2, y1#+y2>}"
by (simp add: zadd_def raw_zadd image_intrel_int)
lemma raw_zadd_int0: "z ∈ int ==> raw_zadd ($#0,z) = z"
by (auto simp add: int_def int_of_def raw_zadd)
lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)"
by (simp add: zadd_def raw_zadd_int0)
lemma zadd_int0: "z ∈ int ==> $#0 $+ z = z"
by simp
lemma raw_zminus_zadd_distrib:
"[| z ∈ int; w ∈ int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)"
by (auto simp add: zminus raw_zadd int_def)
lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w"
by (simp add: zadd_def raw_zminus_zadd_distrib)
lemma raw_zadd_commute:
"[| z ∈ int; w ∈ int |] ==> raw_zadd(z,w) = raw_zadd(w,z)"
by (auto simp add: raw_zadd add_ac int_def)
lemma zadd_commute: "z $+ w = w $+ z"
by (simp add: zadd_def raw_zadd_commute)
lemma raw_zadd_assoc:
"[| z1: int; z2: int; z3: int |]
==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))"
by (auto simp add: int_def raw_zadd add_assoc)
lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)"
by (simp add: zadd_def raw_zadd_type raw_zadd_assoc)
lemma zadd_left_commute: "z1$+(z2$+z3) = z2$+(z1$+z3)"
apply (simp add: zadd_assoc [symmetric])
apply (simp add: zadd_commute)
done
lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
lemma int_of_add: "$# (m #+ n) = ($#m) $+ ($#n)"
by (simp add: int_of_def zadd)
lemma int_succ_int_1: "$# succ(m) = $# 1 $+ ($# m)"
by (simp add: int_of_add [symmetric] natify_succ)
lemma int_of_diff:
"[| m∈nat; n ≤ m |] ==> $# (m #- n) = ($#m) $- ($#n)"
apply (simp add: int_of_def zdiff_def)
apply (frule lt_nat_in_nat)
apply (simp_all add: zadd zminus add_diff_inverse2)
done
lemma raw_zadd_zminus_inverse: "z ∈ int ==> raw_zadd (z, $- z) = $#0"
by (auto simp add: int_def int_of_def zminus raw_zadd add_commute)
lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0"
apply (simp add: zadd_def)
apply (subst zminus_intify [symmetric])
apply (rule intify_in_int [THEN raw_zadd_zminus_inverse])
done
lemma zadd_zminus_inverse2 [simp]: "($- z) $+ z = $#0"
by (simp add: zadd_commute zadd_zminus_inverse)
lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)"
by (rule trans [OF zadd_commute zadd_int0_intify])
lemma zadd_int0_right: "z ∈ int ==> z $+ $#0 = z"
by simp
subsection‹\<^term>‹zmult›: Integer Multiplication›
text‹Congruence property for multiplication›
lemma zmult_congruent2:
"(%p1 p2. split(%x1 y1. split(%x2 y2.
intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))
respects2 intrel"
apply (rule equiv_intrel [THEN congruent2_commuteI], auto)
apply (rename_tac x y)
apply (frule_tac t = "%u. x#*u" in sym [THEN subst_context])
apply (drule_tac t = "%u. y#*u" in subst_context)
apply (erule add_left_cancel)+
apply (simp_all add: add_mult_distrib_left)
done
lemma raw_zmult_type: "[| z ∈ int; w ∈ int |] ==> raw_zmult(z,w) ∈ int"
apply (simp add: int_def raw_zmult_def)
apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+)
apply (simp add: Let_def)
done
lemma zmult_type [iff,TC]: "z $* w ∈ int"
by (simp add: zmult_def raw_zmult_type)
lemma raw_zmult:
"[| x1∈nat; y1∈nat; x2∈nat; y2∈nat |]
==> raw_zmult(intrel``{<x1,y1>}, intrel``{<x2,y2>}) =
intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
by (simp add: raw_zmult_def
UN_equiv_class2 [OF equiv_intrel equiv_intrel zmult_congruent2])
lemma zmult:
"[| x1∈nat; y1∈nat; x2∈nat; y2∈nat |]
==> (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) =
intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
by (simp add: zmult_def raw_zmult image_intrel_int)
lemma raw_zmult_int0: "z ∈ int ==> raw_zmult ($#0,z) = $#0"
by (auto simp add: int_def int_of_def raw_zmult)
lemma zmult_int0 [simp]: "$#0 $* z = $#0"
by (simp add: zmult_def raw_zmult_int0)
lemma raw_zmult_int1: "z ∈ int ==> raw_zmult ($#1,z) = z"
by (auto simp add: int_def int_of_def raw_zmult)
lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)"
by (simp add: zmult_def raw_zmult_int1)
lemma zmult_int1: "z ∈ int ==> $#1 $* z = z"
by simp
lemma raw_zmult_commute:
"[| z ∈ int; w ∈ int |] ==> raw_zmult(z,w) = raw_zmult(w,z)"
by (auto simp add: int_def raw_zmult add_ac mult_ac)
lemma zmult_commute: "z $* w = w $* z"
by (simp add: zmult_def raw_zmult_commute)
lemma raw_zmult_zminus:
"[| z ∈ int; w ∈ int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)"
by (auto simp add: int_def zminus raw_zmult add_ac)
lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)"
apply (simp add: zmult_def raw_zmult_zminus)
apply (subst zminus_intify [symmetric], rule raw_zmult_zminus, auto)
done
lemma zmult_zminus_right [simp]: "w $* ($- z) = $- (w $* z)"
by (simp add: zmult_commute [of w])
lemma raw_zmult_assoc:
"[| z1: int; z2: int; z3: int |]
==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))"
by (auto simp add: int_def raw_zmult add_mult_distrib_left add_ac mult_ac)
lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)"
by (simp add: zmult_def raw_zmult_type raw_zmult_assoc)
lemma zmult_left_commute: "z1$*(z2$*z3) = z2$*(z1$*z3)"
apply (simp add: zmult_assoc [symmetric])
apply (simp add: zmult_commute)
done
lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute
lemma raw_zadd_zmult_distrib:
"[| z1: int; z2: int; w ∈ int |]
==> raw_zmult(raw_zadd(z1,z2), w) =
raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))"
by (auto simp add: int_def raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac)
lemma zadd_zmult_distrib: "(z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)"
by (simp add: zmult_def zadd_def raw_zadd_type raw_zmult_type
raw_zadd_zmult_distrib)
lemma zadd_zmult_distrib2: "w $* (z1 $+ z2) = (w $* z1) $+ (w $* z2)"
by (simp add: zmult_commute [of w] zadd_zmult_distrib)
lemmas int_typechecks =
int_of_type zminus_type zmagnitude_type zadd_type zmult_type
lemma zdiff_type [iff,TC]: "z $- w ∈ int"
by (simp add: zdiff_def)
lemma zminus_zdiff_eq [simp]: "$- (z $- y) = y $- z"
by (simp add: zdiff_def zadd_commute)
lemma zdiff_zmult_distrib: "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)"
apply (simp add: zdiff_def)
apply (subst zadd_zmult_distrib)
apply (simp add: zmult_zminus)
done
lemma zdiff_zmult_distrib2: "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)"
by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
lemma zadd_zdiff_eq: "x $+ (y $- z) = (x $+ y) $- z"
by (simp add: zdiff_def zadd_ac)
lemma zdiff_zadd_eq: "(x $- y) $+ z = (x $+ z) $- y"
by (simp add: zdiff_def zadd_ac)
subsection‹The "Less Than" Relation›
lemma zless_linear_lemma:
"[| z ∈ int; w ∈ int |] ==> z$<w | z=w | w$<z"
apply (simp add: int_def zless_def znegative_def zdiff_def, auto)
apply (simp add: zadd zminus image_iff Bex_def)
apply (rule_tac i = "xb#+ya" and j = "xc #+ y" in Ord_linear_lt)
apply (force dest!: spec simp add: add_ac)+
done
lemma zless_linear: "z$<w | intify(z)=intify(w) | w$<z"
apply (cut_tac z = " intify (z) " and w = " intify (w) " in zless_linear_lemma)
apply auto
done
lemma zless_not_refl [iff]: "~ (z$<z)"
by (auto simp add: zless_def znegative_def int_of_def zdiff_def)
lemma neq_iff_zless: "[| x ∈ int; y ∈ int |] ==> (x ≠ y) ⟷ (x $< y | y $< x)"
by (cut_tac z = x and w = y in zless_linear, auto)
lemma zless_imp_intify_neq: "w $< z ==> intify(w) ≠ intify(z)"
apply auto
apply (subgoal_tac "~ (intify (w) $< intify (z))")
apply (erule_tac [2] ssubst)
apply (simp (no_asm_use))
apply auto
done
lemma zless_imp_succ_zadd_lemma:
"[| w $< z; w ∈ int; z ∈ int |] ==> (∃n∈nat. z = w $+ $#(succ(n)))"
apply (simp add: zless_def znegative_def zdiff_def int_def)
apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def)
apply (rule_tac x = k in bexI)
apply (erule_tac i="succ (v)" for v in add_left_cancel, auto)
done
lemma zless_imp_succ_zadd:
"w $< z ==> (∃n∈nat. w $+ $#(succ(n)) = intify(z))"
apply (subgoal_tac "intify (w) $< intify (z) ")
apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma)
apply auto
done
lemma zless_succ_zadd_lemma:
"w ∈ int ==> w $< w $+ $# succ(n)"
apply (simp add: zless_def znegative_def zdiff_def int_def)
apply (auto simp add: zadd zminus int_of_def image_iff)
apply (rule_tac x = 0 in exI, auto)
done
lemma zless_succ_zadd: "w $< w $+ $# succ(n)"
by (cut_tac intify_in_int [THEN zless_succ_zadd_lemma], auto)
lemma zless_iff_succ_zadd:
"w $< z ⟷ (∃n∈nat. w $+ $#(succ(n)) = intify(z))"
apply (rule iffI)
apply (erule zless_imp_succ_zadd, auto)
apply (rename_tac "n")
apply (cut_tac w = w and n = n in zless_succ_zadd, auto)
done
lemma zless_int_of [simp]: "[| m∈nat; n∈nat |] ==> ($#m $< $#n) ⟷ (m<n)"
apply (simp add: less_iff_succ_add zless_iff_succ_zadd int_of_add [symmetric])
apply (blast intro: sym)
done
lemma zless_trans_lemma:
"[| x $< y; y $< z; x ∈ int; y ∈ int; z ∈ int |] ==> x $< z"
apply (simp add: zless_def znegative_def zdiff_def int_def)
apply (auto simp add: zadd zminus image_iff)
apply (rename_tac x1 x2 y1 y2)
apply (rule_tac x = "x1#+x2" in exI)
apply (rule_tac x = "y1#+y2" in exI)
apply (auto simp add: add_lt_mono)
apply (rule sym)
apply hypsubst_thin
apply (erule add_left_cancel)+
apply auto
done
lemma zless_trans [trans]: "[| x $< y; y $< z |] ==> x $< z"
apply (subgoal_tac "intify (x) $< intify (z) ")
apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma)
apply auto
done
lemma zless_not_sym: "z $< w ==> ~ (w $< z)"
by (blast dest: zless_trans)
lemmas zless_asym = zless_not_sym [THEN swap]
lemma zless_imp_zle: "z $< w ==> z $≤ w"
by (simp add: zle_def)
lemma zle_linear: "z $≤ w | w $≤ z"
apply (simp add: zle_def)
apply (cut_tac zless_linear, blast)
done
subsection‹Less Than or Equals›
lemma zle_refl: "z $≤ z"
by (simp add: zle_def)
lemma zle_eq_refl: "x=y ==> x $≤ y"
by (simp add: zle_refl)
lemma zle_anti_sym_intify: "[| x $≤ y; y $≤ x |] ==> intify(x) = intify(y)"
apply (simp add: zle_def, auto)
apply (blast dest: zless_trans)
done
lemma zle_anti_sym: "[| x $≤ y; y $≤ x; x ∈ int; y ∈ int |] ==> x=y"
by (drule zle_anti_sym_intify, auto)
lemma zle_trans_lemma:
"[| x ∈ int; y ∈ int; z ∈ int; x $≤ y; y $≤ z |] ==> x $≤ z"
apply (simp add: zle_def, auto)
apply (blast intro: zless_trans)
done
lemma zle_trans [trans]: "[| x $≤ y; y $≤ z |] ==> x $≤ z"
apply (subgoal_tac "intify (x) $≤ intify (z) ")
apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma)
apply auto
done
lemma zle_zless_trans [trans]: "[| i $≤ j; j $< k |] ==> i $< k"
apply (auto simp add: zle_def)
apply (blast intro: zless_trans)
apply (simp add: zless_def zdiff_def zadd_def)
done
lemma zless_zle_trans [trans]: "[| i $< j; j $≤ k |] ==> i $< k"
apply (auto simp add: zle_def)
apply (blast intro: zless_trans)
apply (simp add: zless_def zdiff_def zminus_def)
done
lemma not_zless_iff_zle: "~ (z $< w) ⟷ (w $≤ z)"
apply (cut_tac z = z and w = w in zless_linear)
apply (auto dest: zless_trans simp add: zle_def)
apply (auto dest!: zless_imp_intify_neq)
done
lemma not_zle_iff_zless: "~ (z $≤ w) ⟷ (w $< z)"
by (simp add: not_zless_iff_zle [THEN iff_sym])
subsection‹More subtraction laws (for ‹zcompare_rls›)›
lemma zdiff_zdiff_eq: "(x $- y) $- z = x $- (y $+ z)"
by (simp add: zdiff_def zadd_ac)
lemma zdiff_zdiff_eq2: "x $- (y $- z) = (x $+ z) $- y"
by (simp add: zdiff_def zadd_ac)
lemma zdiff_zless_iff: "(x$-y $< z) ⟷ (x $< z $+ y)"
by (simp add: zless_def zdiff_def zadd_ac)
lemma zless_zdiff_iff: "(x $< z$-y) ⟷ (x $+ y $< z)"
by (simp add: zless_def zdiff_def zadd_ac)
lemma zdiff_eq_iff: "[| x ∈ int; z ∈ int |] ==> (x$-y = z) ⟷ (x = z $+ y)"
by (auto simp add: zdiff_def zadd_assoc)
lemma eq_zdiff_iff: "[| x ∈ int; z ∈ int |] ==> (x = z$-y) ⟷ (x $+ y = z)"
by (auto simp add: zdiff_def zadd_assoc)
lemma zdiff_zle_iff_lemma:
"[| x ∈ int; z ∈ int |] ==> (x$-y $≤ z) ⟷ (x $≤ z $+ y)"
by (auto simp add: zle_def zdiff_eq_iff zdiff_zless_iff)
lemma zdiff_zle_iff: "(x$-y $≤ z) ⟷ (x $≤ z $+ y)"
by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp)
lemma zle_zdiff_iff_lemma:
"[| x ∈ int; z ∈ int |] ==>(x $≤ z$-y) ⟷ (x $+ y $≤ z)"
apply (auto simp add: zle_def zdiff_eq_iff zless_zdiff_iff)
apply (auto simp add: zdiff_def zadd_assoc)
done
lemma zle_zdiff_iff: "(x $≤ z$-y) ⟷ (x $+ y $≤ z)"
by (cut_tac zle_zdiff_iff_lemma [ OF intify_in_int intify_in_int], simp)
text‹This list of rewrites simplifies (in)equalities by bringing subtractions
to the top and then moving negative terms to the other side.
Use with ‹zadd_ac››
lemmas zcompare_rls =
zdiff_def [symmetric]
zadd_zdiff_eq zdiff_zadd_eq zdiff_zdiff_eq zdiff_zdiff_eq2
zdiff_zless_iff zless_zdiff_iff zdiff_zle_iff zle_zdiff_iff
zdiff_eq_iff eq_zdiff_iff
subsection‹Monotonicity and Cancellation Results for Instantiation
of the CancelNumerals Simprocs›
lemma zadd_left_cancel:
"[| w ∈ int; w': int |] ==> (z $+ w' = z $+ w) ⟷ (w' = w)"
apply safe
apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
apply (simp add: zadd_ac)
done
lemma zadd_left_cancel_intify [simp]:
"(z $+ w' = z $+ w) ⟷ intify(w') = intify(w)"
apply (rule iff_trans)
apply (rule_tac [2] zadd_left_cancel, auto)
done
lemma zadd_right_cancel:
"[| w ∈ int; w': int |] ==> (w' $+ z = w $+ z) ⟷ (w' = w)"
apply safe
apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
apply (simp add: zadd_ac)
done
lemma zadd_right_cancel_intify [simp]:
"(w' $+ z = w $+ z) ⟷ intify(w') = intify(w)"
apply (rule iff_trans)
apply (rule_tac [2] zadd_right_cancel, auto)
done
lemma zadd_right_cancel_zless [simp]: "(w' $+ z $< w $+ z) ⟷ (w' $< w)"
by (simp add: zdiff_zless_iff [THEN iff_sym] zdiff_def zadd_assoc)
lemma zadd_left_cancel_zless [simp]: "(z $+ w' $< z $+ w) ⟷ (w' $< w)"
by (simp add: zadd_commute [of z] zadd_right_cancel_zless)
lemma zadd_right_cancel_zle [simp]: "(w' $+ z $≤ w $+ z) ⟷ w' $≤ w"
by (simp add: zle_def)
lemma zadd_left_cancel_zle [simp]: "(z $+ w' $≤ z $+ w) ⟷ w' $≤ w"
by (simp add: zadd_commute [of z] zadd_right_cancel_zle)
lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2]
lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2]
lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2]
lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2]
lemma zadd_zle_mono: "[| w' $≤ w; z' $≤ z |] ==> w' $+ z' $≤ w $+ z"
by (erule zadd_zle_mono1 [THEN zle_trans], simp)
lemma zadd_zless_mono: "[| w' $< w; z' $≤ z |] ==> w' $+ z' $< w $+ z"
by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp)
subsection‹Comparison laws›
lemma zminus_zless_zminus [simp]: "($- x $< $- y) ⟷ (y $< x)"
by (simp add: zless_def zdiff_def zadd_ac)
lemma zminus_zle_zminus [simp]: "($- x $≤ $- y) ⟷ (y $≤ x)"
by (simp add: not_zless_iff_zle [THEN iff_sym])
subsubsection‹More inequality lemmas›
lemma equation_zminus: "[| x ∈ int; y ∈ int |] ==> (x = $- y) ⟷ (y = $- x)"
by auto
lemma zminus_equation: "[| x ∈ int; y ∈ int |] ==> ($- x = y) ⟷ ($- y = x)"
by auto
lemma equation_zminus_intify: "(intify(x) = $- y) ⟷ (intify(y) = $- x)"
apply (cut_tac x = "intify (x) " and y = "intify (y) " in equation_zminus)
apply auto
done
lemma zminus_equation_intify: "($- x = intify(y)) ⟷ ($- y = intify(x))"
apply (cut_tac x = "intify (x) " and y = "intify (y) " in zminus_equation)
apply auto
done
subsubsection‹The next several equations are permutative: watch out!›
lemma zless_zminus: "(x $< $- y) ⟷ (y $< $- x)"
by (simp add: zless_def zdiff_def zadd_ac)
lemma zminus_zless: "($- x $< y) ⟷ ($- y $< x)"
by (simp add: zless_def zdiff_def zadd_ac)
lemma zle_zminus: "(x $≤ $- y) ⟷ (y $≤ $- x)"
by (simp add: not_zless_iff_zle [THEN iff_sym] zminus_zless)
lemma zminus_zle: "($- x $≤ y) ⟷ ($- y $≤ x)"
by (simp add: not_zless_iff_zle [THEN iff_sym] zless_zminus)
end