Theory OrderArith

theory OrderArith
imports Order Ordinal
(*  Title:      ZF/OrderArith.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge
*)

section‹Combining Orderings: Foundations of Ordinal Arithmetic›

theory OrderArith imports Order Sum Ordinal begin

definition
  (*disjoint sum of two relations; underlies ordinal addition*)
  radd    :: "[i,i,i,i]=>i"  where
    "radd(A,r,B,s) ==
                {z: (A+B) * (A+B).
                    (∃x y. z = <Inl(x), Inr(y)>)   |
                    (∃x' x. z = <Inl(x'), Inl(x)> & <x',x>:r)   |
                    (∃y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"

definition
  (*lexicographic product of two relations; underlies ordinal multiplication*)
  rmult   :: "[i,i,i,i]=>i"  where
    "rmult(A,r,B,s) ==
                {z: (A*B) * (A*B).
                    ∃x' y' x y. z = <<x',y'>, <x,y>> &
                       (<x',x>: r | (x'=x & <y',y>: s))}"

definition
  (*inverse image of a relation*)
  rvimage :: "[i,i,i]=>i"  where
    "rvimage(A,f,r) == {z ∈ A*A. ∃x y. z = <x,y> & <f`x,f`y>: r}"

definition
  measure :: "[i, i⇒i] ⇒ i"  where
    "measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"


subsection‹Addition of Relations -- Disjoint Sum›

subsubsection‹Rewrite rules.  Can be used to obtain introduction rules›

lemma radd_Inl_Inr_iff [iff]:
    "<Inl(a), Inr(b)> ∈ radd(A,r,B,s)  ⟷  a ∈ A & b ∈ B"
by (unfold radd_def, blast)

lemma radd_Inl_iff [iff]:
    "<Inl(a'), Inl(a)> ∈ radd(A,r,B,s)  ⟷  a':A & a ∈ A & <a',a>:r"
by (unfold radd_def, blast)

lemma radd_Inr_iff [iff]:
    "<Inr(b'), Inr(b)> ∈ radd(A,r,B,s) ⟷  b':B & b ∈ B & <b',b>:s"
by (unfold radd_def, blast)

lemma radd_Inr_Inl_iff [simp]:
    "<Inr(b), Inl(a)> ∈ radd(A,r,B,s) ⟷ False"
by (unfold radd_def, blast)

declare radd_Inr_Inl_iff [THEN iffD1, dest!]

subsubsection‹Elimination Rule›

lemma raddE:
    "[| <p',p> ∈ radd(A,r,B,s);
        !!x y. [| p'=Inl(x); x ∈ A; p=Inr(y); y ∈ B |] ==> Q;
        !!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x ∈ A |] ==> Q;
        !!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y ∈ B |] ==> Q
     |] ==> Q"
by (unfold radd_def, blast)

subsubsection‹Type checking›

lemma radd_type: "radd(A,r,B,s) ⊆ (A+B) * (A+B)"
apply (unfold radd_def)
apply (rule Collect_subset)
done

lemmas field_radd = radd_type [THEN field_rel_subset]

subsubsection‹Linearity›

lemma linear_radd:
    "[| linear(A,r);  linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
by (unfold linear_def, blast)


subsubsection‹Well-foundedness›

lemma wf_on_radd: "[| wf[A](r);  wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
apply (rule wf_onI2)
apply (subgoal_tac "∀x∈A. Inl (x) ∈ Ba")
 ― ‹Proving the lemma, which is needed twice!›
 prefer 2
 apply (erule_tac V = "y ∈ A + B" in thin_rl)
 apply (rule_tac ballI)
 apply (erule_tac r = r and a = x in wf_on_induct, assumption)
 apply blast
txt‹Returning to main part of proof›
apply safe
apply blast
apply (erule_tac r = s and a = ya in wf_on_induct, assumption, blast)
done

lemma wf_radd: "[| wf(r);  wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_radd])
apply (blast intro: wf_on_radd)
done

lemma well_ord_radd:
     "[| well_ord(A,r);  well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_radd)
apply (simp add: well_ord_def tot_ord_def linear_radd)
done

subsubsection‹An \<^term>‹ord_iso› congruence law›

lemma sum_bij:
     "[| f ∈ bij(A,C);  g ∈ bij(B,D) |]
      ==> (λz∈A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) ∈ bij(A+B, C+D)"
apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))"
       in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done

lemma sum_ord_iso_cong:
    "[| f ∈ ord_iso(A,r,A',r');  g ∈ ord_iso(B,s,B',s') |] ==>
            (λz∈A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))
            ∈ ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: sum_bij)
(*Do the beta-reductions now*)
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type])
done

(*Could we prove an ord_iso result?  Perhaps
     ord_iso(A+B, radd(A,r,B,s), A ∪ B, r ∪ s) *)
lemma sum_disjoint_bij: "A ∩ B = 0 ==>
            (λz∈A+B. case(%x. x, %y. y, z)) ∈ bij(A+B, A ∪ B)"
apply (rule_tac d = "%z. if z ∈ A then Inl (z) else Inr (z) " in lam_bijective)
apply auto
done

subsubsection‹Associativity›

lemma sum_assoc_bij:
     "(λz∈(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
      ∈ bij((A+B)+C, A+(B+C))"
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))"
       in lam_bijective)
apply auto
done

lemma sum_assoc_ord_iso:
     "(λz∈(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
      ∈ ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),
                A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
by (rule sum_assoc_bij [THEN ord_isoI], auto)


subsection‹Multiplication of Relations -- Lexicographic Product›

subsubsection‹Rewrite rule.  Can be used to obtain introduction rules›

lemma  rmult_iff [iff]:
    "<<a',b'>, <a,b>> ∈ rmult(A,r,B,s) ⟷
            (<a',a>: r  & a':A & a ∈ A & b': B & b ∈ B) |
            (<b',b>: s  & a'=a & a ∈ A & b': B & b ∈ B)"

by (unfold rmult_def, blast)

lemma rmultE:
    "[| <<a',b'>, <a,b>> ∈ rmult(A,r,B,s);
        [| <a',a>: r;  a':A;  a ∈ A;  b':B;  b ∈ B |] ==> Q;
        [| <b',b>: s;  a ∈ A;  a'=a;  b':B;  b ∈ B |] ==> Q
     |] ==> Q"
by blast

subsubsection‹Type checking›

lemma rmult_type: "rmult(A,r,B,s) ⊆ (A*B) * (A*B)"
by (unfold rmult_def, rule Collect_subset)

lemmas field_rmult = rmult_type [THEN field_rel_subset]

subsubsection‹Linearity›

lemma linear_rmult:
    "[| linear(A,r);  linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
by (simp add: linear_def, blast)

subsubsection‹Well-foundedness›

lemma wf_on_rmult: "[| wf[A](r);  wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
apply (rule wf_onI2)
apply (erule SigmaE)
apply (erule ssubst)
apply (subgoal_tac "∀b∈B. <x,b>: Ba", blast)
apply (erule_tac a = x in wf_on_induct, assumption)
apply (rule ballI)
apply (erule_tac a = b in wf_on_induct, assumption)
apply (best elim!: rmultE bspec [THEN mp])
done


lemma wf_rmult: "[| wf(r);  wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_rmult])
apply (blast intro: wf_on_rmult)
done

lemma well_ord_rmult:
     "[| well_ord(A,r);  well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_rmult)
apply (simp add: well_ord_def tot_ord_def linear_rmult)
done


subsubsection‹An \<^term>‹ord_iso› congruence law›

lemma prod_bij:
     "[| f ∈ bij(A,C);  g ∈ bij(B,D) |]
      ==> (lam <x,y>:A*B. <f`x, g`y>) ∈ bij(A*B, C*D)"
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>"
       in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done

lemma prod_ord_iso_cong:
    "[| f ∈ ord_iso(A,r,A',r');  g ∈ ord_iso(B,s,B',s') |]
     ==> (lam <x,y>:A*B. <f`x, g`y>)
         ∈ ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: prod_bij)
apply (simp_all add: bij_is_fun [THEN apply_type])
apply (blast intro: bij_is_inj [THEN inj_apply_equality])
done

lemma singleton_prod_bij: "(λz∈A. <x,z>) ∈ bij(A, {x}*A)"
by (rule_tac d = snd in lam_bijective, auto)

(*Used??*)
lemma singleton_prod_ord_iso:
     "well_ord({x},xr) ==>
          (λz∈A. <x,z>) ∈ ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
apply (rule singleton_prod_bij [THEN ord_isoI])
apply (simp (no_asm_simp))
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])
done

(*Here we build a complicated function term, then simplify it using
  case_cong, id_conv, comp_lam, case_case.*)
lemma prod_sum_singleton_bij:
     "a∉C ==>
       (λx∈C*B + D. case(%x. x, %y.<a,y>, x))
       ∈ bij(C*B + D, C*B ∪ {a}*D)"
apply (rule subst_elem)
apply (rule id_bij [THEN sum_bij, THEN comp_bij])
apply (rule singleton_prod_bij)
apply (rule sum_disjoint_bij, blast)
apply (simp (no_asm_simp) cong add: case_cong)
apply (rule comp_lam [THEN trans, symmetric])
apply (fast elim!: case_type)
apply (simp (no_asm_simp) add: case_case)
done

lemma prod_sum_singleton_ord_iso:
 "[| a ∈ A;  well_ord(A,r) |] ==>
    (λx∈pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))
    ∈ ord_iso(pred(A,a,r)*B + pred(B,b,s),
                  radd(A*B, rmult(A,r,B,s), B, s),
              pred(A,a,r)*B ∪ {a}*pred(B,b,s), rmult(A,r,B,s))"
apply (rule prod_sum_singleton_bij [THEN ord_isoI])
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)
done

subsubsection‹Distributive law›

lemma sum_prod_distrib_bij:
     "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
      ∈ bij((A+B)*C, (A*C)+(B*C))"
by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) "
    in lam_bijective, auto)

lemma sum_prod_distrib_ord_iso:
 "(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
  ∈ ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),
            (A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)

subsubsection‹Associativity›

lemma prod_assoc_bij:
     "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) ∈ bij((A*B)*C, A*(B*C))"
by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)

lemma prod_assoc_ord_iso:
 "(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)
  ∈ ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),
            A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
by (rule prod_assoc_bij [THEN ord_isoI], auto)

subsection‹Inverse Image of a Relation›

subsubsection‹Rewrite rule›

lemma rvimage_iff: "<a,b> ∈ rvimage(A,f,r)  ⟷  <f`a,f`b>: r & a ∈ A & b ∈ A"
by (unfold rvimage_def, blast)

subsubsection‹Type checking›

lemma rvimage_type: "rvimage(A,f,r) ⊆ A*A"
by (unfold rvimage_def, rule Collect_subset)

lemmas field_rvimage = rvimage_type [THEN field_rel_subset]

lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
by (unfold rvimage_def, blast)


subsubsection‹Partial Ordering Properties›

lemma irrefl_rvimage:
    "[| f ∈ inj(A,B);  irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"
apply (unfold irrefl_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done

lemma trans_on_rvimage:
    "[| f ∈ inj(A,B);  trans[B](r) |] ==> trans[A](rvimage(A,f,r))"
apply (unfold trans_on_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done

lemma part_ord_rvimage:
    "[| f ∈ inj(A,B);  part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"
apply (unfold part_ord_def)
apply (blast intro!: irrefl_rvimage trans_on_rvimage)
done

subsubsection‹Linearity›

lemma linear_rvimage:
    "[| f ∈ inj(A,B);  linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
apply (simp add: inj_def linear_def rvimage_iff)
apply (blast intro: apply_funtype)
done

lemma tot_ord_rvimage:
    "[| f ∈ inj(A,B);  tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
apply (unfold tot_ord_def)
apply (blast intro!: part_ord_rvimage linear_rvimage)
done


subsubsection‹Well-foundedness›

lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
apply clarify
apply (subgoal_tac "∃w. w ∈ {w: {f`x. x ∈ Q}. ∃x. x ∈ Q & (f`x = w) }")
 apply (erule allE)
 apply (erule impE)
 apply assumption
 apply blast
apply blast
done

text‹But note that the combination of ‹wf_imp_wf_on› and
 ‹wf_rvimage› gives \<^prop>‹wf(r) ==> wf[C](rvimage(A,f,r))››
lemma wf_on_rvimage: "[| f ∈ A->B;  wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
apply (rule wf_onI2)
apply (subgoal_tac "∀z∈A. f`z=f`y ⟶ z ∈ Ba")
 apply blast
apply (erule_tac a = "f`y" in wf_on_induct)
 apply (blast intro!: apply_funtype)
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1])
done

(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
lemma well_ord_rvimage:
     "[| f ∈ inj(A,B);  well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"
apply (rule well_ordI)
apply (unfold well_ord_def tot_ord_def)
apply (blast intro!: wf_on_rvimage inj_is_fun)
apply (blast intro!: linear_rvimage)
done

lemma ord_iso_rvimage:
    "f ∈ bij(A,B) ==> f ∈ ord_iso(A, rvimage(A,f,s), B, s)"
apply (unfold ord_iso_def)
apply (simp add: rvimage_iff)
done

lemma ord_iso_rvimage_eq:
    "f ∈ ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r ∩ A*A"
by (unfold ord_iso_def rvimage_def, blast)


subsection‹Every well-founded relation is a subset of some inverse image of
      an ordinal›

lemma wf_rvimage_Ord: "Ord(i) ⟹ wf(rvimage(A, f, Memrel(i)))"
by (blast intro: wf_rvimage wf_Memrel)


definition
  wfrank :: "[i,i]=>i"  where
    "wfrank(r,a) == wfrec(r, a, %x f. ⋃y ∈ r-``{x}. succ(f`y))"

definition
  wftype :: "i=>i"  where
    "wftype(r) == ⋃y ∈ range(r). succ(wfrank(r,y))"

lemma wfrank: "wf(r) ==> wfrank(r,a) = (⋃y ∈ r-``{a}. succ(wfrank(r,y)))"
by (subst wfrank_def [THEN def_wfrec], simp_all)

lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
apply (rule_tac a=a in wf_induct, assumption)
apply (subst wfrank, assumption)
apply (rule Ord_succ [THEN Ord_UN], blast)
done

lemma wfrank_lt: "[|wf(r); <a,b> ∈ r|] ==> wfrank(r,a) < wfrank(r,b)"
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)
apply (rule UN_I [THEN ltI])
apply (simp add: Ord_wfrank vimage_iff)+
done

lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
by (simp add: wftype_def Ord_wfrank)

lemma wftypeI: "⟦wf(r);  x ∈ field(r)⟧ ⟹ wfrank(r,x) ∈ wftype(r)"
apply (simp add: wftype_def)
apply (blast intro: wfrank_lt [THEN ltD])
done


lemma wf_imp_subset_rvimage:
     "[|wf(r); r ⊆ A*A|] ==> ∃i f. Ord(i) & r ⊆ rvimage(A, f, Memrel(i))"
apply (rule_tac x="wftype(r)" in exI)
apply (rule_tac x="λx∈A. wfrank(r,x)" in exI)
apply (simp add: Ord_wftype, clarify)
apply (frule subsetD, assumption, clarify)
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
apply (blast intro: wftypeI)
done

theorem wf_iff_subset_rvimage:
  "relation(r) ==> wf(r) ⟷ (∃i f A. Ord(i) & r ⊆ rvimage(A, f, Memrel(i)))"
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
          intro: wf_rvimage_Ord [THEN wf_subset])


subsection‹Other Results›

lemma wf_times: "A ∩ B = 0 ==> wf(A*B)"
by (simp add: wf_def, blast)

text‹Could also be used to prove ‹wf_radd››
lemma wf_Un:
     "[| range(r) ∩ domain(s) = 0; wf(r);  wf(s) |] ==> wf(r ∪ s)"
apply (simp add: wf_def, clarify)
apply (rule equalityI)
 prefer 2 apply blast
apply clarify
apply (drule_tac x=Z in spec)
apply (drule_tac x="Z ∩ domain(s)" in spec)
apply simp
apply (blast intro: elim: equalityE)
done

subsubsection‹The Empty Relation›

lemma wf0: "wf(0)"
by (simp add: wf_def, blast)

lemma linear0: "linear(0,0)"
by (simp add: linear_def)

lemma well_ord0: "well_ord(0,0)"
by (blast intro: wf_imp_wf_on well_ordI wf0 linear0)

subsubsection‹The "measure" relation is useful with wfrec›

lemma measure_eq_rvimage_Memrel:
     "measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
apply (rule equalityI, auto)
apply (auto intro: Ord_in_Ord simp add: lt_def)
done

lemma wf_measure [iff]: "wf(measure(A,f))"
by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)

lemma measure_iff [iff]: "<x,y> ∈ measure(A,f) ⟷ x ∈ A & y ∈ A & f(x)<f(y)"
by (simp (no_asm) add: measure_def)

lemma linear_measure:
 assumes Ordf: "!!x. x ∈ A ==> Ord(f(x))"
     and inj:  "!!x y. [|x ∈ A; y ∈ A; f(x) = f(y) |] ==> x=y"
 shows "linear(A, measure(A,f))"
apply (auto simp add: linear_def)
apply (rule_tac i="f(x)" and j="f(y)" in Ord_linear_lt)
    apply (simp_all add: Ordf)
apply (blast intro: inj)
done

lemma wf_on_measure: "wf[B](measure(A,f))"
by (rule wf_imp_wf_on [OF wf_measure])

lemma well_ord_measure:
 assumes Ordf: "!!x. x ∈ A ==> Ord(f(x))"
     and inj:  "!!x y. [|x ∈ A; y ∈ A; f(x) = f(y) |] ==> x=y"
 shows "well_ord(A, measure(A,f))"
apply (rule well_ordI)
apply (rule wf_on_measure)
apply (blast intro: linear_measure Ordf inj)
done

lemma measure_type: "measure(A,f) ⊆ A*A"
by (auto simp add: measure_def)

subsubsection‹Well-foundedness of Unions›

lemma wf_on_Union:
 assumes wfA: "wf[A](r)"
     and wfB: "!!a. a∈A ==> wf[B(a)](s)"
     and ok: "!!a u v. [|<u,v> ∈ s; v ∈ B(a); a ∈ A|]
                       ==> (∃a'∈A. <a',a> ∈ r & u ∈ B(a')) | u ∈ B(a)"
 shows "wf[⋃a∈A. B(a)](s)"
apply (rule wf_onI2)
apply (erule UN_E)
apply (subgoal_tac "∀z ∈ B(a). z ∈ Ba", blast)
apply (rule_tac a = a in wf_on_induct [OF wfA], assumption)
apply (rule ballI)
apply (rule_tac a = z in wf_on_induct [OF wfB], assumption, assumption)
apply (rename_tac u)
apply (drule_tac x=u in bspec, blast)
apply (erule mp, clarify)
apply (frule ok, assumption+, blast)
done

subsubsection‹Bijections involving Powersets›

lemma Pow_sum_bij:
    "(λZ ∈ Pow(A+B). <{x ∈ A. Inl(x) ∈ Z}, {y ∈ B. Inr(y) ∈ Z}>)
     ∈ bij(Pow(A+B), Pow(A)*Pow(B))"
apply (rule_tac d = "%<X,Y>. {Inl (x). x ∈ X} ∪ {Inr (y). y ∈ Y}"
       in lam_bijective)
apply force+
done

text‹As a special case, we have \<^term>‹bij(Pow(A*B), A -> Pow(B))››
lemma Pow_Sigma_bij:
    "(λr ∈ Pow(Sigma(A,B)). λx ∈ A. r``{x})
     ∈ bij(Pow(Sigma(A,B)), ∏x ∈ A. Pow(B(x)))"
apply (rule_tac d = "%f. ⋃x ∈ A. ⋃y ∈ f`x. {<x,y>}" in lam_bijective)
apply (blast intro: lam_type)
apply (blast dest: apply_type, simp_all)
apply fast (*strange, but blast can't do it*)
apply (rule fun_extension, auto)
by blast

end